請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70709完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫在弘(Tzai-Hung Wen) | |
| dc.contributor.author | Wei Chien Benny Chin | en |
| dc.contributor.author | 陳威全 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:35:40Z | - |
| dc.date.available | 2021-08-10 | |
| dc.date.copyright | 2018-08-10 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-09 | |
| dc.identifier.citation | Agterberg, F. P. (2013). Fractals and spatial statistics of point patterns. Journal of Earth Science, 24(1):1–11.
Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention, 41(3):359–364. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2):93–115. Arribas-Bel, D., de Graaff, T., and Rey, S. J. (2017). Looking at John Snow’s Cholera map from the twenty first century: A practical primer on reproducibility and open science. In Regional Research Frontiers-Vol. 2, pages 283–306. Springer. Bailey, T. C. and Gatrell, A. C. (1995). Interactive spatial data analysis, volume 413. Longman Scientific & Technical Essex. Batty, M. (2007). Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT press. Batty, M. (2008). The size, scale, and shape of cities. science, 319(5864):769–771. Batty, M., Longley, P., and Fotheringham, S. (1989). Urban growth and form: scaling, fractal geometry, and diffusion-limited aggregation. Environment and Planning A, 21(11):1447–1472. Batty, M. and Longley, P. A. (1994). Fractal cities: a geometry of form and function. Academic press. Blenkinsop, T. G. and Sanderson, D. J. (1999). Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton. Geological Society, London, Special Publications, 155(1):141–151. Boots, B. N. and Getis, A. (1988). Point Pattern Analysis. Sage Publications, Inc. Carlson, C. A. (1991). Spatial distribution of ore deposits. Geology, 19(2):111–114. Chainey, S., Reid, S., and Stuart, N. (2002). When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime. Taylor & Francis, London, England. Chen, Y. and Wang, J. (2013). Multifractal characterization of urban form and growth: the case of Beijing. Environment and Planning B: Planning and Design, 40(5):884–904. Clark, P. J. and Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4):445–453. Cressie, N. (1993). Chapter 8: Spatial point patterns. John Wiley & Sons. Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns. CRC Press. Feng, J. and Chen, Y. (2010). Spatiotemporal evolution of urban form and land-use structure in Hangzhou, China: evidence from fractals. Environment and planning B: Planning and design, 37(5):838–856. Ford, A. and Blenkinsop, T. G. (2008). Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geology Reviews, 33(3):435–450. Fotheringham, A. S. and Wong, D. W. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment and planning A, 23(7):1025–1044. Fotheringham, A. S. and Zhan, F. B. (1996). A comparison of three exploratory methods for cluster detection in spatial point patterns. Geographical analysis, 28(3):200–218. Frankhauser, P. (2004). Comparing the morphology of urban patterns in Europe–a fractal approach. European Cities–Insights on outskirts, Report COST Action, 10:79–105. Frankhauser, P. (2015). From fractal urban pattern analysis to fractal urban planning concepts. In Computational Approaches for Urban Environments, pages 13–48. Springer. Gatrell, A. C., Bailey, T. C., Diggle, P. J., and Rowlingson, B. S. (1996). Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British geographers, pages 256–274. Gerber, M. S. (2014). Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61:115–125. Getis, A. (1984). Interaction modeling using second-order analysis. Environment and Planning A, 16(2):173–183. Getis, A. and Franklin, J. (1987). Second-Order Neighborhood Analysis of Mapped Point Patterns. Ecology, 68(3):473–477. Goodchild, M. F. (2011). Scale in GIS: An overview. Geomorphology, 130(1):5–9. Goodchild, M. F., Anselin, L., and Deichmann, U. (1993). A framework for the areal interpolation of socioeconomic data. Environment and planning A, 25(3):383–397. Goodchild, M. F. and Mark, D. M. (1987). The fractal nature of geographic phenomena. Annals of the Association of American Geographers, 77(2):265–278. Gumiel, P., Sanderson, D., Arias, M., Roberts, S., and Martín-Izard, A. (2010). Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews, 38(4):307–318. Hayakawa, M., Ito, T., and Smirnova, N. (1999). Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993. Geophysical Research Letters, 26(18):2797–2800. Jiang, B. and Brandt, S. A. (2016). A fractal perspective on scale in geography. ISPRS International Journal of Geo-Information, 5(6):95. Jiang, S. and Liu, D. (2012). Box-counting dimension of fractal urban form: stability issues and measurement design. International Journal of Artificial Life Research (IJALR), 3(3):41–63. Kagan, Y. Y. and Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104(1):117–134. Keersmaecker, M. L., Frankhauser, P., and Thomas, I. (2003). Using fractal dimensions for characterizing intra-urban diversity: The example of Brussels. Geographical analysis, 35(4):310–328. King, G. (1997). A solution to the ecological inference problem: Reconstructing Individual Behavior from Aggregate Data. Princeton University Press, Princeton, NJ. Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics-Theory and methods, 26(6):1481–1496. Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inference. Statistics in medicine, 14(8):799–810. Lawson, A. B. and Denison, D. G. (2002). Spatial cluster modelling. CRC press. Lee, J., Lay, J.-G., Chin, W. C. B., Chi, Y.-L., and Hsueh, Y.-H. (2014). An experiment to model spatial diffusion process with nearest neighbor analysis and regression estimation. International Journal of Applied Geospatial Research (IJAGR), 5(1):1–15. Luoto, M. and Hjort, J. (2008). Downscaling of coarse-grained geomorphological data. Earth Surface Processes and Landforms, 33(1):75–89. Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. science, 156(3775):636–638. McCord, E. S. and Ratcliffe, J. H. (2009). Intensity value analysis and the criminogenic effects of land use features on local crime patterns. Crime Patterns and Analysis, 2(1):17–30. Nakaya, T. and Yano, K. (2010). Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Transactions in GIS, 14(3):223–239. Openshaw, S. (1983). The Modifiable Areal Unit Problem. GeoBooks, Norwick, UK. Openshaw, S. (1984). Ecological fallacies and the analysis of areal census data. Environment and planning A, 16(1):17–31. Ord, J. K. and Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis, 27(4):286–306. Orenstein, J. A. (1982). Multidimensional tries used for associative searching. Information Processing Letters, 14(4):150–157. Pickering, G., Bull, J., and Sanderson, D. (1995). Sampling power-law distributions. Tectonophysics, 248(1-2):1–20. Raines, G. L. (2008). Are fractal dimensions of the spatial distribution of mineral deposits meaningful? Natural Resources Research, 17(2):87. Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing Surveys (CSUR), 16(2):187–260. Seaman, D. E. and Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology, 77(7):2075–2085. Sémécurbe, F., Tannier, C., and Roux, S. G. (2016). Spatial distribution of human population in France: Exploring the modifiable areal unit problem using multifractal analysis. Geographical Analysis, 48(3):292–313. Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Chapman and Hall/CRC. Sutton, P. C. (2003). A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote sensing of environment, 86(3):353–369. Tannier, C. and Pumain, D. (2005). Fractals in urban geography: a theoretical outline and an empirical example. Cybergeo: European Journal of Geography. Taylor, C., Gorard, S., and Fitz, J. (2003). The modifiable areal unit problem: segregation between schools and levels of analysis. International Journal of Social Research Methodology, 6(1):41–60. Terzi, F. and Kaya, H. S. (2011). Dynamic spatial analysis of urban sprawl through fractal geometry: the case of Istanbul. Environment and Planning B: Planning and Design, 38(1):175–190. Thomas, I., Frankhauser, P., and Biernacki, C. (2008). The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices. Landscape and urban planning, 84(2):99–115. Upton, G. and Fingleton, B. (1979). Log-linear models in geography. Transactions of the Institute of British Geographers, pages 103–115. Upton, G., Fingleton, B., et al. (1985). Chapter 1: The identification of patterns. John Wiley & Sons Ltd. Varnes, D. J. and Bufe, C. G. (1996). The cyclic and fractal seismic series preceding an mb 4.8 earthquake on 1980 February 14 near the Virgin Islands. Geophysical Journal International, 124(1):149–158. Venables, W. N. and Ripley, B. D. (2002). Tree-Based Methods, pages 251–269. Springer New York, New York, NY. Walsh, J., Watterson, J., and Yielding, G. (1991). The importance of small-scale faulting in regional extension. Nature, 351(6325):391. White, R. and Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment andplanning A, 25(8):1175–1199. White, R., Engelen, G., and Uljee, I. (2015). Modeling cities and regions as complex systems: From theory to planning applications. MIT Press. Wong, W. and Lee, J. (2005). Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley. Yu, X. J. and Ng, C. N. (2007). Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landscape and Urban Planning, 79(1):96–109. Zhang, X., Drake, N. A., Wainwright, J., and Mulligan, M. (1999). Comparison of slope estimates from low resolution DEMs: Scaling issues and a fractal method for their solution. Earth Surface Processes and Landforms, 24(9):763–779. Zhu, A. X., Hudson, B., Burt, J., Lubich, K., and Simonson, D. (2001). Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5):1463–1472. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70709 | - |
| dc.description.abstract | 傳統針對點形態分析的空間統計方法主要聚焦於其全域或區域形態的探討,而忽略了點資料的整體分佈趨勢,這整體分佈可透過一個跨尺度過程中被觀察與描述。過去空間統計研究提出,由多點所組成的點分佈則可能呈現出會隨着尺度而改變的空間形態,亦即可調整空間單元問題 (MAUP) 。另一方面,碎形分析研究指出,點形態在跨尺度過程的初期會以固定的速率發生變化,而經過某一尺度後此速率會降低。發生速率轉換的尺度 (即臨界尺度) 是可反映點的整體分佈趨勢 (即巨觀形態) 的最大尺度,亦即從全域形態開始逐漸提高尺度的過程中,其形態因 MAUP 而發生變化的速率是固定的,而在臨界尺度以上的尺度遞增則只對一些區域造成形態上的影響。
本研究提出一個跨尺度分析架構以偵測臨界尺度,並建立一套將原始點分佈加總成巨觀形態的流程架構。本研究進行了三項實驗,包括兩個針對理論分佈的實驗以及一組實證資料的分析。這三項實驗分別以:(1)探討跨尺度過程中的加總效果;(2)探討單核心群聚特性對跨尺度分析的影響;以及(3)探討真實資料中所反映的巨觀形態與原始分佈之間的差異。結果反映在臨界尺度下的整併點分佈已足夠反映原始點資料的空間形態;群聚的大小與組成群聚的點數量對於跨尺度分析結果呈對數變化的關係;整體分佈趨勢可悲臨界尺度下加總點所形成的巨觀形態所捕捉。 在過去常見於瞭解點分佈形態的全域或區域空間統計研究中之外,本研究不但提供了一個新的分析工具,也提供了一種對於檢視點分佈形態上的新視角。這個分析架構,包括臨界尺度的偵測,以及巨觀形態的呈現方式,對於空間點資料的資料探索以及地圖視覺化將有所幫助。 | zh_TW |
| dc.description.abstract | Conventional spatial statistics analysis reveal either the global or local spatial pattern for point distribution but ignore the big picture of the point data, which can be observed through a scaling process. As discussed in spatial statistical studies, point distribution may show a scale-dependent spatial pattern, namely the modifiable areal unit problem (MAUP). On the other hand, as suggested in fractal analysis studies, the point pattern change at a consistent rate at the beginning of the scaling process, and the rate decrease after a scale. This scale of rate shifting (namely critical scale, CS) is the finest scale that can capture the big picture of the point distribution (namely macro pattern), i.e. the changes of pattern due to MAUP have the same effect since the global level, and the higher scales after CS will only affect the pattern of partial area.
In this study, a scaling analysis framework was proposed to identify the critical scale, and a set of aggregation procedure was designed to convert the original point dataset into the macro pattern. Three experiments were conducted to test the scaling analysis framework, including two experiments on theoretical distributions and one on empirical point distributions. The three experiments were designed: (1) to test the aggregation effect on scaling process; (2) to test the influences of mono-centric clustering properties to the scaling analysis; and (3) to illustrates the contrast between macro patterns and the original distribution of empirical data. The results suggested that the aggregation point on critical scale could capture most of the spatial properties from original data; the area and number of point formed a logarithm relationship with the critical and final scale; and the big picture of the point distribution could be captured by the macro pattern of the aggregated points on critical scale. Aside from the conventional understanding of point pattern as discussed in the previous global or local spatial statistics methods, this study provides not only a new tool but also a novel perspective of viewing the point distribution. This analysis framework, including the critical scale identification and macro pattern aggregation, can be useful for spatial point data exploration and map visualization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:35:40Z (GMT). No. of bitstreams: 1 ntu-107-D03228002-1.pdf: 9867630 bytes, checksum: 1dd046958f7ffaeab85dc0d8599e2f8e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 Introduction p.1
1.1 Motivation p.1 1.2 Background and related studies p.6 1.2.1 Modifiable areal unit problems p.6 1.2.2 Fractal analysis p.7 1.2.3 Point-region quadtree p.9 1.3 Aims p.9 2 The point scaling analysis framework p.13 2.1 Point-Region Quadtree p.16 2.2 Leveling-Down p.21 2.3 Box-counting method p.25 2.4 Searching for critical scale p.30 2.5 Preparation of the results p.34 2.5.1 The key scales of distribution p.34 2.5.2 Additional indexes of scales p.38 2.5.3 Point aggregations p.41 3 Experiments p.45 3.1 Experiment one: Point aggregation p.46 3.1.1 Aims p.46 3.1.2 The three cases p.46 3.1.3 Experiment design p.47 3.1.4 Results p.49 3.1.5 Summary p.56 3.2 Experiment two: Clustering properties p.58 3.2.1 Aims p.58 3.2.2 Experiment design p.58 3.2.3 The cases p.59 3.2.4 Results p.63 3.2.5 Summary p.71 3.3 Experiment three: Empirical cases p.72 3.3.1 Aims p.72 3.3.2 Cases dataset p.72 3.3.3 Results p.74 3.3.4 Summary p.78 4 Discussions p.81 4.1 The critical scale of point distribution p.81 4.2 Data exploration and map visualization p.82 4.3 Macro pattern and micro pattern p.83 4.4 The scaling properties p.85 4.5 Limitations and future directions p.85 5 Conclusion p.87 References p.91 Appendix I: Model for generating clustering distribution p.99 Appendix II: Analysis process of experiment one p.103 Appendix III: Extended analyses of experiment two p.111 Appendix IV: Comparing grid center and mean center approach p.115 Appendix V: Five categories of empirical point distribution case studies p.117 | |
| dc.language.iso | en | |
| dc.subject | 點區塊四分樹 | zh_TW |
| dc.subject | 碎形視角 | zh_TW |
| dc.subject | 點分佈 | zh_TW |
| dc.subject | 跨尺度 | zh_TW |
| dc.subject | 巨觀形態 | zh_TW |
| dc.subject | 群聚現象 | zh_TW |
| dc.subject | macro pattern | en |
| dc.subject | Scaling | en |
| dc.subject | point distribution | en |
| dc.subject | Point-Region Quadtree | en |
| dc.subject | fractal perspective | en |
| dc.subject | clustering phenomenon | en |
| dc.title | 多點群聚現象的跨尺度特性 | zh_TW |
| dc.title | The scaling properties of point clustering phenomena | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林楨家(Jen-Jia Lin),黃崇源(Chung-Yuan Huang),Clive Eric Sabel(Clive Eric Sabel),余清祥(Ching-Syang Yue),蔡宇軒(Yu-Shiuan Tsai) | |
| dc.subject.keyword | 跨尺度,點分佈,點區塊四分樹,碎形視角,群聚現象,巨觀形態, | zh_TW |
| dc.subject.keyword | Scaling,point distribution,Point-Region Quadtree,fractal perspective,clustering phenomenon,macro pattern, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201802404 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
