請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武(Shiu-Wu Chau) | |
| dc.contributor.author | Chi-Yu Chen | en |
| dc.contributor.author | 陳麒友 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:35:32Z | - |
| dc.date.available | 2020-09-03 | |
| dc.date.copyright | 2020-09-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-24 | |
| dc.identifier.citation | [1] 經濟部能源局,風力發電推動方案,2017。 [2] 簡仲璟、郭一羽,近岸波浪頻譜形狀之研究,中華民國第十六屆海洋工程研討會論文,1994。 [3] https://wikiwaves.org/Ocean-Wave_Spectra. [4] T. Tran, D. Kim, and J. Song, 'Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion,' Energies, vol. 7, no. 8, pp. 5011-5026, 2014. [5] V. Leble and G. Barakos, '10-MW wind turbine performance under pitching and yawing motion, 'Journal of Solar Energy Engineering, vol. 139, no. 4, p. 041003, 2017. [6] T. T. Tran and D. H. Kim, 'A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion,' Renewable energy, vol. 90, pp. 204-228, 2016. [7] T. T. Tran and D. H. Kim, 'The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions,' Journal of Mechanical Science and Technology, vol. 29, no. 2, pp. 549-561, 2015. [8] 李雅榮、何正有、黃政彰、王昱傑,受波浪影響之單柱型浮動式風力發電機的輸出改善,中國造船暨輪機工程學刊,2015。 [9] 黃政彰,浮體式風力機之動態響應研究,臺灣大學工程科學及海洋工程學研究所碩士論文,2013。 [10] 王昱傑,浮體式風力機之運動特性研究及其效能影響評估,臺灣大學工程科學及海洋工程學研究所碩士論文,2011。 [11] 顏源佑,離岸風力電廠浮筒水動力性能模擬計算,臺灣大學工程科學及海洋工程學研究所碩士論文,2009。 [12] 唐宏結、楊瑞源、許文陽、莊紫晴,Hywind 和 DeepCwind 兩種浮動式風機基座及其錨碇系統動力特性比較,第40屆海洋工程研討會論文集, 2018。 [13] J. Jonkman, Definition of the Floating System for Phase IV of OC3, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010. [14] A. Robertson, J. Jonkman, M. Masciola, H. Song, A. Goupee, A. Coilling, and C. Luan, Definition of the semisubmersible floating system for phase II of OC4, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2014. [15] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW reference wind turbine for offshore system development, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009. [16] C. Bak, F. Zahle, R. Bitsche, T. Kim, A. Yde, L. C. Henriksen, M. H. Hansen, J. P. A. A. Blasques, M. Gaunaa, and A. Natarajan, The DTU 10-MW reference wind turbine, in Danish Wind Power Research 2013, 2013. [17] https://www.iea.org/. [18] I. E. Udoh and J. Zou, 'Driving Down Cost: A Case Study of Floating Substructure for A 10MW Wind Turbine,' Offshore Technology Conference, 2019: Offshore Technology Conference. [19] 李引棋,浮體式風力機受風與波浪耦合作用下運動之數值模擬研究,臺灣大學工程科學及海洋工程學研究所碩士論文,2013。 [20] Y. Zhang and B. Kim, 'A Fully Coupled Computational Fluid Dynamics Method for Analysis of Semi-Submersible Floating Offshore Wind Turbines Under Wind-Wave Excitation Conditions Based on OC5 Data,' Applied Sciences, vol. 8, no. 11, p. 2314, 2018. [21] T. T. Tran and D. H. Kim, 'Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach,' Renewable energy, vol. 92, pp. 244-261, 2016. [22] A. Robertson, J. Jonkman, F. Wendt, A. Goupee, and H. Dagher, Definition of the OC5 DeepCwind semisubmersible floating system, Technical report NREL, 2016. [23] A. Robertson, J. Jonkman, W. Musial, F. Vorpahl, and W. Popko, Offshore code comparison collaboration, continuation: Phase II results of a floating semisubmersible wind system, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013. [24] A. Robertson, J. Jonkman, F. Vorpahl, W. Popko, J. Qvist, L.Froyd, X. Chen, J, Azcona, E. Uzungoglu, and C. Guedes Soares, Offshore code comparison collaboration, continuation within IEA Wind task 30: phase II results regarding a floating semisubmersible wind system, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2014. [25] 李仲凱,耦合 BEM 與 CFD 方法計算浮體式風機於規則波中運動之研究,臺灣大學工程科學及海洋工程學研究所碩士論文,2014。 [26] 陳麒友、許育誠、范秉天、林宗岳、趙修武,運用耦合式方法計算浮式風機在規則波中的運動特性,台灣風能學術研討會暨科技部成果發表會,2019。 [27] https:// questfwe.com/concepts/windfloat-gen-2-principle-power. [28] https://www.cruse-offshore.de/downloads.html. [29] https://www.ideol-offshore.com/en/technology. [30] https://www.weather.gov/mfl/beaufort. [31] M.D. Haskind, 'The hydrodynamic theory of ship oscillations in rolling and pitching,' Prikl. Mat. Mekh, vol. 10, pp. 33-66, 1946. [32] M.D. Haskind, 'The oscillation of a ship oscillations in still water level,' Otd. Tekh. Nauk, vol. 1, pp. 23-34, 1946. [33] J. V. Wehausen, and E. V. Laitone, 'Surface waves,' Fluid Dynamics, pp. 446-778, 1960. [34] STAR-CCM+ user guide version 13.06, 2018. [35] C. W. Hirt and B. D. Nichols, 'Volume of fluid method for the dynamics of free surface,' J. Comput. Phys, vol. 39, pp. 201-225, 1981. [36] S. Goldstein, 'On the vortex theory of screw propellers,' Containing Papers of a Mathematical and Physical Character, vol. 123, no. 792, pp. 440-465, 1929. [37] M. H. Hansen and L. C. Henriksen, Basic DTU wind energy controller, 2013. [38] M. H. Hansen, A. D. Hansen, T. J. Larsen, S. Øye, P. Sørensen, and P. Fuglsang, 'Control design for a pitch-regulated, variable speed wind turbine,' 2005. [39] OrcaFlex user manual version 11.0 a, 2019. [40] AQWA user manual 2019R2, 2019. [41] https://www.ideol-offshore.com/en/technology. [42] J. Jonkman, M. Jason, and L. Buhl Jr. Marshall, FAST user’s guide, National Renewable Energy Lab., Golden, CO, 2005. [43] Y. H. Lin, and C. H. Yang, 'Hydrodynamic Simulation of the Semi-Submersible Wind Float by Investigating Mooring Systems in Irregular Waves,' Applied Sciences,10.12 (2020): 4267. [44] C. Baniotopoulos, C. Borri, and T. Stathopoulos, Environmental wind engineering and design of wind energy structures, Springer Science Business Media, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70705 | - |
| dc.description.abstract | 本研究以四種浮式風機為目標,其特徵尺寸約為60公尺,搭載DTU 10MW風機,浮式平台則參考 OC4 DeepCwind、Windfloat、Cruse和DampingPool的設計概念,分別設計浮式風機A、B、C和D。使用軟體AQWA計算水動力係數。使用OrcaFlex以葉片動量元素理論模擬風機氣動力特性,利用有限元素法模擬繫纜系統,並求解運動方程式,風機控制系統參考NREL 5MW風機的控制策略並調整參數使其適用於DTU 10MW風機。本研究模擬條件為波高6米週期10秒的規則波,以及台灣海峽最常見和最極端的不規則波況,分別是以有義波高1.5米、零上切週期5.5秒和有義波高4.5米、零上切週期7.5秒的JONSWAP波譜加以描述。規則波中以浮式風機 A的功率響應最佳,不同運動模式的相位差會影響功率響應。不規則波中,以浮式風機輪轂的運動速度和發電功率的標準差作為評斷標準,在最常見的波況中以浮式風機 B的表現最佳,標準差分別為0.079 m/s和0.259%的額定功率。在最極端的波況中則以浮式風機 A的表現最佳,標準差分別為0.229 m/s和0.900%的額定功率。因此,浮式風機 B在運維經濟性上具有優勢,浮式風機A則在設計安全性考量上具有優勢。 | zh_TW |
| dc.description.abstract | This study examines four types of floating wind turbine platforms, for which the characteristic sizes are approximately 60 meters. Four target floating platforms, i.e., A, B, C, and D, refer to the design concept of OC4 DeepCwind, Windfloat, Cruse, and DampingPool, respectively. These floating platforms are all equipped with a DTU 10MW wind turbine. The aerodynamics and mooring systems are simulated by OrcaFlex using BEM and FEM, respectively. Hydrodynamic coefficients are calculated by panel method through AQWA and the equations of motion are also solved by OrcaFlex. The wind turbine control system references the control strategy of NREL 5MW wind turbine and the parameters are adjusted to make them suitable for DTU 10MW wind turbine. The target simulation conditions are a regular and two irregular wave conditions in Taiwan Strait, while the inflow wind speed is calculated from the Beaufort Scale. Under the regular wave condition (wave height = 6m, wave period = 10s), the phase difference between different motions obviously affects the power, and the platform A performs the best. Under the irregular wave conditions, taking the standard deviations of generator power and velocity at hub height as the evaluation criterion, the performance of platform B is the best under the wave condition of the highest probability (significant wave height = 1.5m, zero-crossing period = 5.5s), where the standard deviation of rotor plane wind speed is 0.079 m/s and that of generated power is 0.259% of the rated mechanical power. Platform A has the best performance under the extreme sea state (significant wave height = 4.5m, zero-crossing period = 7.5s), where the standard deviation of rotor plane wind speed is 0.229 m/s and that of generated power is 0.9% of the rated mechanical power. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:35:32Z (GMT). No. of bitstreams: 1 U0001-2408202011005400.pdf: 8497112 bytes, checksum: 3cdbd5d6688083cd96c45cc1ac0e0e03 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Abstract I Content III Nomenclature IV List of Figures IX List of Tables XIII Chapter 1 Introduction 1 Chapter 2 Floating Platform Design 10 Chapter 3 Numerical Methods 13 3.1 Modeling of Hydrodynamic Coefficient 13 3.2 Modeling of Viscous Damping Coefficient 19 3.2.1 Governing Equation 19 3.2.2 Free Surface Modeling 21 3.3 Modeling of Floating Wind Turbine 25 3.3.1 Equation of Motion 25 3.3.2 Aerodynamics Modeling 27 3.3.3 Control System Modeling 34 3.3.4 Mooring Modeling 39 3.4 Numerical Framework 41 Chapter 4 Viscous Damping Correction 43 Chapter 5 Validation of Method 58 5.1 Aerodynamics 58 5.2 Hydrodynamic Coefficient 70 5.3 Motion Response 75 Chapter 6 Numerical Simulation 79 6.1 Regular Wave Response 79 6.2 Irregular Wave Response 88 Chapter 7 Conclusions 96 Reference 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 風機控制 | zh_TW |
| dc.subject | 小板法 | zh_TW |
| dc.subject | 葉片動量元素理論 | zh_TW |
| dc.subject | 半潛型浮體平台 | zh_TW |
| dc.subject | 離岸浮體式風機 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | computational fluid dynamics | en |
| dc.subject | semi-submersible floating platform | en |
| dc.subject | blade element momentum theory | en |
| dc.subject | panel method | en |
| dc.subject | control system | en |
| dc.subject | floating wind turbine | en |
| dc.title | 臺灣離岸風電潛力場址半潛式浮動平台性能研究 | zh_TW |
| dc.title | Comparative Study on Semi-Submersible Floating Platforms for Offshore Wind in Taiwan Strait | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊瑞源(Ruei-Yuan Yang),江茂雄(Mao-Xiong Jiang),鍾年勉(Nian-Mian Zhong),邱逢琛(Feng-Chen Qiu),林宗岳(Tsung-Yueh Lin) | |
| dc.subject.keyword | 離岸浮體式風機,半潛型浮體平台,葉片動量元素理論,小板法,風機控制,計算流體力學, | zh_TW |
| dc.subject.keyword | floating wind turbine,semi-submersible floating platform,blade element momentum theory,panel method,control system,computational fluid dynamics, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202004161 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2408202011005400.pdf 未授權公開取用 | 8.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
