Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民(Hung-Min Hsu)
dc.contributor.authorCheng-Han Leeen
dc.contributor.author李承翰zh_TW
dc.date.accessioned2021-06-17T04:35:13Z-
dc.date.available2018-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-09
dc.identifier.citationBibliography
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.
[2] S. Baker and T. Kanade. Hallucinating faces. In Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on, pages 83–88. IEEE, 2000.
[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing humanlevel performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015.
[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, pages 448–456, 2015.
[6] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. arXiv preprint arXiv:1704.03915, 2017.
[7] Y. Li, C. Cai, G. Qiu, and K.-M. Lam. Face hallucination based on sparse local-pixel structure. Pattern Recognition, 47(3):1261–1270, 2014.
[8] C. Liu, H.-Y. Shum, and W. T. Freeman. Face hallucination: Theory and practice. International Journal of Computer Vision, 75(1):115, 2007.
[9] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, pages 3730–3738, 2015.
[10] X. Ma, J. Zhang, and C. Qi. Hallucinating face by position-patch. Pattern Recognition, 43(6):2224–2236, 2010.
[11] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
[12] M. F. Tappen and C. Liu. A bayesian approach to alignment-based image hallucination. In European Conference on Computer Vision, pages 236–249. Springer, 2012.
[13] X. Wang and X. Tang. Hallucinating face by eigentransformation. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(3):425–434, 2005.
[14] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.
[15] C.-Y. Yang, S. Liu, and M.-H. Yang. Structured face hallucination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1099–1106, 2013.
[16] X. Yu and F. Porikli. Ultra-resolving face images by discriminative generative networks. In European Conference on Computer Vision, pages 318–333. Springer, 2016.
[17] X. Yu and F. Porikli. Face hallucination with tiny unaligned images by transformative discriminative neural networks. In AAAI, pages 4327–4333, 2017.
[18] X. Yu and F. Porikli. Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3760–3768, 2017.
[19] E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin. Learning face hallucination in the wild. In AAAI, pages 3871–3877, 2015.
[20] S. Zhu, S. Liu, C. C. Loy, and X. Tang. Deep cascaded bi-network for face hallucination. In European Conference on Computer Vision, pages 614–630. Springer, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70695-
dc.description.abstract雖然現有的人臉超解析分辨作法,在整體區域效能評估已經取得優良的效果,但大部份的方法在局部臉部屬性的復原上仍不夠準確,特別在復原極低解析度的人臉相片(14 x 12 像素)。在這篇論文中,我們提出了全新的臉部屬性輔助之卷積類神經網路在人臉超解析分辨的問題上,我們使用了臉部屬性來加強人臉超解析分辨,特別在局部區域復原之強化,使復原之結果更加有描述性。具體來說,我們提出的方法融合了影像領域與臉部屬性的領域,成功地輔助臉部屬性之復原。比起過去的方法,更多的實驗顯示出我們提出的方法不論在整體區域還是局部區域之視覺效果還有量化數據都能達到更好的表現,除此之外,我們提出的AACNN 即使在不知道完整的臉部屬性情況下,也能有很好的復原效果。zh_TW
dc.description.abstractThough existing face hallucination methods achieve great performance on the global region evaluation, most of them cannot recover local attributes accurately, especially when super-resolving a very low-resolution face image from 14 x 12 pixels to its 8 x larger one. In this paper, we propose a brand new Attribute Augmented Convolutional Neural Network (AACNN) to assist face hallucination by exploiting facial attributes. The goal is to augment face hallucination, particularly the local regions, with informative attribute description. More specifically, our method fuses the advantages of both image domain and attribute domain, which significantly assists facial attributes recovery. Extensive experiments demonstrate that our proposed method achieves superior visual quality of hallucination on both local region and global region against the state-of-the-art methods. In addition, our AACNN still improves the performance of hallucination adaptively with partial attribute input.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:35:13Z (GMT). No. of bitstreams: 1
ntu-107-R05922077-1.pdf: 3297450 bytes, checksum: 9e69b11495ae61b882e01da46903915b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書i
誌謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Related Works 6
2.1 Face Hallucination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Face hallucination with adversarial training . . . . . . . . . . . . . . . . 7
3 Proposed Methods 9
3.1 Overall Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Perceptual fusion from image and attribute domain . . . . . . . . . . . . 12
4 Experiments 14
4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Evaluation on global region of face hallucination . . . . . . . . . . . . . 16
4.3 Evaluation on local region of face hallucination . . . . . . . . . . . . . . 18
4.4 Evaluation on unknown attribute situation . . . . . . . . . . . . . . . . . 20
5 Conclusions 22
Bibliography 23
dc.language.isoen
dc.subject超解析分辨zh_TW
dc.subject生成對抗網路zh_TW
dc.subject臉部屬性zh_TW
dc.subjectSuper Resolutionen
dc.subjectFacial Attributeen
dc.subjectGenerative Adversarial Networken
dc.title臉部屬性輔助之卷積類神經網路於人臉超解析分辨zh_TW
dc.titleAttribute Augmented Convolutional Neural Network for Face Hallucinationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉梅珍(Mei-Chen Yeh),陳文進(Wen-Chin Chen)
dc.subject.keyword超解析分辨,臉部屬性,生成對抗網路,zh_TW
dc.subject.keywordSuper Resolution,Facial Attribute,Generative Adversarial Network,en
dc.relation.page25
dc.identifier.doi10.6342/NTU201802791
dc.rights.note有償授權
dc.date.accepted2018-08-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved