請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70694
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘述元(Shu-Yuan Pan) | |
dc.contributor.author | Wei-Chan Syu | en |
dc.contributor.author | 徐偉展 | zh_TW |
dc.date.accessioned | 2021-06-17T04:35:11Z | - |
dc.date.available | 2020-09-03 | |
dc.date.copyright | 2020-09-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-25 | |
dc.identifier.citation | 行政院環境保護署,2007,環境水質自動連續採樣監測先期規劃期末報告,計畫編號:EPA-97-L101-02-206。 行政院環境保護署,2020,土壤及地下水汙染整治網https://sgw.epa.gov.tw/public/prevent/04。 行政院環境保護署,2015,廢水收集處理系統規劃-規劃管理篇(第12冊),行政院環保署環訓所廢水處理專責人員訓練教材。 行政院環境保護署,2016,修正「放流水標準」,行政院環境保護署環署水字第1040110356號令。 行政院農業委員會,2017,農田水利新南向政策輸出技術評估規劃(計畫編號:106 農科-8.1.4-利-b1),106年度農業科技計畫研究報告。 李政萱,2016,以離子樹脂縮時包監測水中重金屬,臺灣大學化學生物環境系統工程學研究所碩士論文。 簡傳彬,2011,農業回歸水暨餘水再利用可行性研究-以彰化地區為例,行政院經濟建設委員會計畫,99060403。 劉黔蘭,1998,電鍍廢水污染土壤,土壤與環境,第1卷第2期,161-169。 凌永健、陳柏嘉、王振宇、葉明軒、施玉枝,2011,被動式滲透膜應用於環境水質中重金屬採樣檢測之研究,行政院環境保護署委託研究,計畫編號:EPA-100-E3S3-02-01。 陳冠維,2016,以離子交換樹脂埋入法評估重金屬鉛於底泥之生物有效性及毒性效應,臺灣大學農業化學研究所碩士論文。 陳慎德、張尊國、管永愷等,2014,全國重金屬高污染潛勢農地之管制及調查計畫,行政院環保署計畫,EPA-101-GA12-03-A267。 陳慎德、梁秋萍、吳孟洋、吳嘉倫,2016,農田水利會灌溉水質自動監測系統之執行成效及展望,第二十屆海峽兩岸水利科技交流研討會。 徐明麟,1997,克利金法預測土壤重金屬污染範圍,臺灣大學農業工程學系研究所碩士論文。 張尊國、徐貴新、鄭百佑,2010,彰化農地污染之環境資料蒐集與污染關聯性分析計畫,行政院環保署計畫,EPA-99-GA103-02-D054。 張尊國,范致豪,秦靜如,林聖淇,2016,建立灌溉水質自動監測網及分級管理農業水土資源,行政院農委會主管科技計畫,105農科-8.5.1-利-b1。 張尊國,范致豪,林裕彬,2017,建立灌溉水質自動監測網及分級管理農業水土資源,行政院農委會主管科技計畫,106農科-15.2.1-利-b1。 張尊國、鄭百佑,2014,102年度全國農地污染之環境資料蒐集與污染關聯性分析計畫,行政院環保署計畫,EPA-102-GA11-03-D144。 葉正華,1988,吸附分離過程基礎,北京:化學工業出版社,1-16。 經濟部工業局,1995,金屬工業廢水回收處理技術,工業污染防治技術服務團出版。 臺灣環境資訊協會,2020,https://d4sg.org/farmland-pollution/。 Alguacil, F. J., Alonso, M., Lozano, L. J. (2004). Chromium(III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling. Chemosphere, 57, 789-793. Allan, I. J., Knutsson, J., Guigues, N., Mills, G. A., Fouillac, A. M., Greenwood, R. (2007). Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. Journal of Environmental Monitoring, 9, 672-681. Altun, T., Pehlivan, E., (2007). Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Journal of Hazardous Materials, 140, 299-307. An, F. Q., Wang, Y., Xue, X. Y., Hu, T. P., Gao, J. F., Gao, B. J. (2018). Design and application of thiourea modified D301 resin for the effective removal of toxic heavy metal ions. Chemical Engineering Research and Design, 130, 78-86. Assefi, M., Maroufi, S., Nekouei, R. K., Sahajwalla, V. (2018). Selective recovery of indium from scrap LCD panels using macroporous resins. Journal of Cleaner Production, 180, 814-822. Ansari, R., Fahim, N. K. (2007). Application of polypyrrole coated on wood sawdust for removal of Cr(VI) ion from aqueous solutions. Reactive and Functional Polymers, 67, 367-374. Bayramoglu, G., Akbulut, A., Liman, G., Arica, M. Y. (2017). Removal of metal complexed azo dyes from aqueous solution using tris (2-aminoethyl) amine ligand modified magneticp (GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies. Chemical Engineering Research and Design, 124, 85-97. Chowdury, M. S. U., Emran, T. B., Ghosh, S., Pathak, A., Alam, M. M., Absar, N. Hossain, M. S. (2019). IoT based real-time river water quality monitoring system. Procedia Computer Science, 155, 161-168. Davison, W., Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546-548. Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G. (2005). Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282, 20-25. Donia, A. M., Atia, A. A., El-Boraey, H., Mabrouk, D. H. (2006). Uptake studies of copper(II) on glycidyl methacrylate chelating resin containing Fe2O3 particles. Separation and purification technology, 49, 64-70. Dubey, S. S., Gupta, R. K. (2005). Removal behavior of Babool bark (Acacia nilotica) for submicro concentrations of Hg2+ from aqueous solutions: a radiotracer study. Separation and purification technology, 41, 21-28. Ekmekçi, Y., Tanyolac, D., Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of plant physiology, 165, 600-611. El-Naas, M. H., Al-Zuhair, S., Alhaija, M. A. (2010). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical engineering journal, 162, 997-1005. Eom, T. H., Lee, C. H., Kim, J. H., Lee, C. H. (2005). Development of an ion exchange system for plating wastewater treatment. Desalination, 180, 163-172. Franco, P. E., Veit, M. T., Borba, C. E., da Cunha Gonçalves, G., Fagundes-Klen, M. R., Bergamasco, R., Suzaki, P. Y. R. (2013). Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: Ion exchange equilibrium and kinetics. Chemical engineering journal, 221, 426-435. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92, 407-418. Gabelman, A. (2017). Adsorption basics: part 1. Chemical Engineering Progress, 113, 48-53. Gamez, S., Garces, K., de la Torre, E., Guevara, A. (2019). Precious metals recovery from waste printed circuit boards using thiosulfate leaching and ion exchange resin. Hydrometallurgy, 186, 1-11. Gode, F., Pehlivan, E. (2006). Removal of chromium(III) from aqueous solutions using Lewatit S100: the effect of pH, time, metal concentration and temperature. Journal of Hazardous Materials, 136, 330-337. Ho, Y. S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34, 451-465. Huang, J. J. S., Lin, S. C., Löwemark, L., Liou, S. Y. H., Chang, Q., Chang, T. K., Croudace, I. W. (2019). Rapid assessment of heavy metal pollution using ion-exchange resin sachets and micro-XRF core-scanning. Scientific reports, 9, 1-6. Kalaivani, S. S., Muthukrishnaraj, A., Sivanesan, S., Ravikumar, L. (2016). Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process Safety and Environmental Protection, 104, 11-23. Kang, S. Y., Lee, J. U., Moon, S. H., Kim, K. W. (2004). Competitive adsorption characteristic of Co2+, Ni2+ and Cr3+ by IRN77 cation exchange resin in synthesized wastewater. Chemosphere, 56, 141-147. Kwak, E. A., Kim, S. J., Kim, J. H. (2012). Effect of ion exchange resin on increased surface area crystallization process for purification of vancomycin. Korean Journal of Chemical Engineering, 29, 1487-1492. Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39. Li, L., Liu, F., Jing, X., Ling, P., Li, A. (2011). Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: isotherm and kinetic modeling. Water research, 45, 1177-1188. Ma, J., Shen, J., Wang, C., Wei, Y. (2018). Preparation of dual-function chelating resin with high capacity and adjustable adsorption selectivity to variety of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 91, 532-538. Nekouei, R. K., Pahlevani, F., Assefi, M., Maroufi, S., Sahajwalla, V. (2019). Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. Journal of hazardous materials, 371, 389-396. Onyango, M. S., Kojima, Y., Aoyi, O., Bernardo, E. C., Matsuda, H. (2004). Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. Journal of colloid and interface science, 279, 341-350. Owusu-Asante, Y. (2019). Analysis and determination of optimum risk factors to prioritize illegal discharge potential in urban catchments. Physics and Chemistry of the Earth, Parts A/B/C, 111, 86-99. Özcan, A. S., Erdem, B., Özcan, A. (2005). Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 266, 73-81. Pan, S. Y., Syu, W. J., Chang, T. K., Lee, C. H. (2020). A multiple model approach for evaluating the performance of time-lapse capsules in trapping heavy metals from water bodies. RSC Advances, 10, 16490-16501. Rao, M. M., Ramesh, A., Rao, G. P. C., Seshaiah, K. (2006). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of hazardous materials, 129, 123-129. Rock, C. M., Brassill, N., Dery, J. L., Carr, D., McLain, J. E., Bright, K. R., Gerba, C. P. (2019). Review of water quality criteria for water reuse and risk-based implications for irrigated produce under the FDA Food Safety Modernization Act, produce safety rule. Environmental research, 172, 616-629. Ruiqi Technology. (2017). Continuous Automatic Monitoring and Analysis of Irrigation Water Quality Commissioned Professional Service Plan (2014–2016). Farmland Water Conservation Association. Shih, P. K., Chiang, L. C., Lin, S. C., Chang, T. K., Hsu, W. C. (2019). Application of Time-Lapse Ion Exchange Resin Sachets (TIERS) for Detecting Illegal Effluent Discharge in Mixed Industrial and Agricultural Areas, Taiwan. Sustainability, 11, 3129. Srivastava, N. K., Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of hazardous materials, 151, 1-8. Stuer-Lauridsen, F. (2005). Review of passive accumulation devices for monitoring organic micro pollutants in the aquatic environment, Environmental Pollution, 136, 503-524. Syu, W. J., Chang, T. K., Pan, S. Y. (2020). Establishment of an Automatic Real-Time Monitoring System for Irrigation Water Quality Management. International journal of environmental research and public health, 17, 737. Tamkang University. (2018) Irrigation water quality monitoring survey and technical counseling plan. Agricultural Council of the Executive Yuan,. Thakare, Y. N., Jana, A. K. (2015). Performance of high density ion exchange resin (INDION225H) for removal of Cu(II) from waste water. Journal of Environmental Chemical Engineering, 3, 1393-1398. USEPA, (2007), Retrieved from https://www.epa.gov/waterqualitysurveillance/online-water-quality-monitoring-resources. Online Water Quality Monitoring Resources. Weber, W. J., Morris, J. C. (1962). Proceedings of the International Conference on Water Pollution Symposium. Pergamon Press, Oxford, 2, 235-266. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70694 | - |
dc.description.abstract | 提供即時監測以識別潛在污染源與完善灌溉水質管理,連續自動採樣技術和雲端技術之結合至關重要,本研究建立一自動即時監控系統,針對重要水質參數與重金屬(例如:鎘、鉛、銅、鎳、鋅及鉻等)進行監測;同時,搭配團隊所開發之縮時膠囊技術,全盤性瞭解水體中重金屬離子於時間與空間上變化,儘管縮時膠囊技術已開發且現地應用,於基礎研究上仍需瞭解不同重金屬相互間吸附行為,以進一步改善其設計及應用。本研究目的包括探討縮時膠囊在開放水體環境下交換重金屬之效率,同時建立標準方法;應用於現地流域的適用性驗證,檢視潛在污染源空間地理位置的相關性,有效掌握排污行為,並探討其變數間主要影響因子。於本研究中,採用三種不同角度,包含反應曲面法(統計學),探討隨時間依賴的擴散控制模型(動力學)和等溫吸附曲線(熱力學),以評估各操作因素對流域中使用縮時膠囊吸附重金屬之效益。研究結果顯示於流域中使用縮時膠囊吸附重金屬,可發現吸附速率常數、擴散速率和最大吸附容量等關鍵參數,皆可為設計提供參考依據。於基本水質參數(例如:酸鹼值和導電度)案例,以驗證智慧監控系統之數據校正能力,並評估水質參數的趨勢可適用於不同類型的監測站,系統可持續地確定不同水質參數的閾值,且可立即通知相關單位,採取處理及應變行動,並討論不同監測站的重金屬即時自動監測系統的代表性結果。 | zh_TW |
dc.description.abstract | For determining the sources of water pollution from industries while managing the quality of irrigation water, the continuous automatic sampling techniques should be integrated with the cloudy technologies to establish the real-time monitoring. In this study, the automatic real-time monitoring system was established to improve the management of irrigation water quality, such as Cu, Pb, Ni, Cd, Cr and Zn. For effectively detecting the illegal discharges of industrial wastewater containing heavy metals, we also applied the developed time-lapse capsules to capture heavy metals from the waterbody. Despite the recent development of time-lapse capsules, the fundamental knowledge and theoretical understanding were required to elucidate the capture behavior of heavy metals, thereby further improving the design of capsule technologies. In this study, three approaches, i.e., response surface models (from the statistics point of view), diffusion-controlled prediction models (from the kinetic point of view), and isotherm models (from the equilibrium point of view), were applied to understand the effect of different operating factors on the adsorption of heavy metals from the watershed using the capsules. Several examples on basic water quality parameters (e.g., pH and electrical conductance) were also provided to demonstrate the ability and capacity of data correction by the smart monitoring system, and then evaluated the trend of water quality parameters at different monitoring stations. Consequently, the developed system could simultaneously determine the threshold to initiate early warming of different water quality indicators, and immediately notify the authorities for followups. The representative results from the real-time automatic monitoring system at different stations were also discussed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:35:11Z (GMT). No. of bitstreams: 1 U0001-2508202015060900.pdf: 7792968 bytes, checksum: 0c0a1b66db5d2655438f7c31d4686016 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 目 錄 摘要 1 Abstract 2 目 錄 3 表目錄 8 第一章 前言 10 1.1 研究動機 10 1.2 研究目的 12 第二章 文獻回顧 13 2.1 農業生產環境安全 13 2.2 國內灌排渠道重金屬污染現況 14 2.2-1河川水質重金屬規範標準 18 2.2-2農地受重金屬污染現況 21 2.2-3 工業廢水污染行業別 25 2.3 水質智慧連續自動監測技術 27 2.3-1 基本水質連續自動監測原理 27 2.3-2 重金屬連續自動監測原理 27 2.3-3 國內外常見現地監測技術 29 2.4 縮時膠囊技術 32 2.4-1 縮時膠囊技術研發 32 2.4-2 離子交換樹脂於重金屬去除與濃縮 35 2.4-3 應用離子交換樹脂於水質監測 37 2.4-4 縮時膠囊技術與被動式採樣分析之差異 38 第三章 研究方法 40 3.1 研究架構 40 3.2 研究區域 41 3.3 現地連續智慧監測技術 45 3.4 縮時膠囊試驗設計 48 3.5 動力學與等溫吸附模式 50 3.5-1 吸附動力學模式 51 3.5-2 等溫吸附模式 53 第四章 結果與討論 55 4.1 建立水質連續監測雲端平台 55 4.1-1 進行數據誤差校正與警報設定 55 4.1-2 研析現地水質監測案例 59 4.1-3 分析監測量能與採樣效能提升程度 66 4.1-4 完善水質自動連續監測管理 69 4.2 應用縮時膠囊於現地重金屬監測 71 4.2-1 樹脂縮時膠囊設計 71 4.2-2 建立縮時膠囊技術標準操作流程 73 4.2-3 應用縮時膠囊技術於現地水質監測 79 4.3 建立縮時膠囊技術預測模式 87 4.3-1建立反應曲面模型操作參數 87 4.3-2 建立吸附動力學模式 92 4.3-3 建立等溫吸附模式 100 4.3-4 整合反應曲面與吸附預測模型 103 4.4 建立智慧灌溉水質管理:整合連續監測與縮時膠囊技術 105 4.4-1 精進智慧連續監測及雲端系統 105 4.4-2 釐清縮時膠囊進行監測之重金屬競爭行為 105 第五章 結論與建議 107 5.1 結論 107 5.1-1整合智慧監管與雲端技術進行灌溉圳路系統管理 107 5.1-2 應用縮時膠囊技術輔助現地監測效能提升 107 5.1-3 建立縮時膠囊吸附水體重金屬預測模式 107 5.2 建議 109 參考文獻 110 | |
dc.language.iso | zh-TW | |
dc.title | 整合即時監測與縮時膠囊技術進行智慧灌溉水質管理 | zh_TW |
dc.title | Integration of Real-time Monitoring and Time Lapse Capsule Technology for Smart Irrigation Water Quality Management | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 博士 | |
dc.contributor.author-orcid | 2508-2020-1506-0900 | |
dc.contributor.advisor-orcid | 潘述元(2508-2020-1506-0900) | |
dc.contributor.coadvisor | 張尊國(Tsun-Kuo Chang) | |
dc.contributor.coadvisor-orcid | 張尊國(2508-2020-1506-0900) | |
dc.contributor.oralexamcommittee | 李達源(Dar-Yuan Lee),王敏昭(Min-Chao Wang),蘇明道(Ming-Daw Su),張文亮(Wen-Liang Chang) | |
dc.contributor.oralexamcommittee-orcid | 李達源(2508-2020-1506-0900),王敏昭(2508-2020-1506-0900),蘇明道(2508-2020-1506-0900),張文亮(2508-2020-1506-0900) | |
dc.subject.keyword | 離子交換樹脂,反應曲面法,動力學,擴散控制,等溫吸附模式, | zh_TW |
dc.subject.keyword | Ion exchange resin,reaction surface method,kinetics,diffusion control,isotherm, | en |
dc.relation.page | 115 | |
dc.identifier.doi | 10.6342/NTU202004164 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2508202015060900.pdf 目前未授權公開取用 | 7.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。