Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70658
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor賈儀平,鄧茂華
dc.contributor.authorChing-Yi Liuen
dc.contributor.author劉慶怡zh_TW
dc.date.accessioned2021-06-17T04:34:01Z-
dc.date.available2019-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citation中央地質調查所,1999,台灣地區地下水觀測網第二期八十八年度計畫嘉南平原水文地質鑽探(乙)成果報告。
中央地質調查所,2000,臺灣活動斷層分布圖。
中央地質調查所,2010,20100304地震地質調查報告,經濟部中央地質調查所,43頁。
中央地質調查所,2012,臺灣活動斷層分布圖。
中央地質調查所,2016,20160206地震地質調查報告,經濟部中央地質調查所,103頁。
王珮玲,2010,同震持續式地下水位變化機制之探討:國立臺灣大學理學院地質科學系暨研究所碩士論文,共144頁。
台灣省水利局,1994,地下水觀測網之建立及運作管理八十三年度報告,地下水觀測井開鑿及相關試驗。
台灣省水利局,1996,地下水觀測網之建立及運作管理八十五年度報告,地下水觀測井建置及相關試驗。
李佳慧,2013,高頻地下水位監測系統之設置與地下水位分析:國立臺灣大學理學院地質科學系暨研究所碩士論文,共65頁。
李佳慧,2013,高頻地下水位監測系統之設置與地下水位分析:國立臺灣大學理學院地質科學系暨研究所碩士論文,共65頁。
柯孝勳、黃明偉、蘇文瑞、葉家承、劉淑燕、柯明淳、吳秉儒、吳子修、陳秋雲,2010,20100304甲仙地震分析評估摘要。災害防救電子報,第57期,第1-7頁。
國家災害防救科技中心,2016,0206地震災情彙整與實地調查報告。災害防救電子報,第57期,第1-7頁。
莊伯禹,2008,集集地震引發河川流量異常變化:國立臺灣大學理學院地質科學系暨研究所碩士論文,共64頁。
陳文山,2016,臺灣地質概論,中華民國地質學會。
陳文山、陳于高、劉聰桂、黃能偉、林清正、宋時驊、李昆杰,2000,九二一集集大地震的地震斷層特性與構造意義。經濟部中央地質調查所特刊第十二號,139-154頁。
經濟部水利署,2003,地下水觀測站井及己完成觀測井井體維護計畫(2/2),地質水文分析。
經濟部水利署,2009,地震與地下水文異常變化分析研究,640頁。
經濟部水利署,2012年,臺灣地區地下水觀測網整體計畫精要成果彙編(81-100年)。
經濟部水利署,2014,台灣水文觀測長期發展計畫第二期(104年~109年)。
經濟部水利署,2016,中華民國一○五年臺灣水文年報總冊。
經濟部水資源局,1997,地下水觀測網之建立及運作管理八十六年度報告,地下水觀測井建置及相關試驗(I)。
經濟部水資源局,1998,地下水觀測綱之建立及運作管理八十七年度子計畫報告,地下水觀測井建置及相關試驗。
經濟部水資源局,2000,中華民國八十八年臺灣水文年報。
臺灣省水利局,1997,讓我們看河去臺灣河川簡介,128頁,臺北。
蒲新杰、甘志文、邱俊達; 何美儀、郭鎧紋、呂佩玲,2015,2013年臺灣地區地震活動回顧,氣象學報第52卷,第2期,43-68頁。
劉光晏,2009,921集集地震橋梁震害線上史料館簡介。檔案季刊,第8卷第3期,132-143頁。
蔡宗旻,2004,超音波水位計量測方式改良及水位數據之品管檢核:國立成功大學水利及海洋工程研究所碩士論文,共115頁。
盧詩丁、林燕慧、朱傚祖、謝凱旋,2010,甲仙地震調查成果。地質,第29卷,第1期,第8-11頁。
Angeliera, J., Lee, J. C., Chu, H. T., Hu, J. C. (2003). Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning. J. Struct. Geol., 25(3), 345–350.
Bear, J. (1979) Hydraulics of groundwater, McGraw-Hill Book Company, New York, 569 p.
Biot M. A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12(2): 155–164
Biot M. A. (1956) General Solutions of the Equations of Elasticity and Consolidation of a Porous Material, J. appl. Mech. 78: 91-96
Charmoille A., Fabbri O., Mudry J., Guglielmi Y., Bertrand C. (2005) Post-seismic permeability change in a shallow fractured aquifer following a M-L 5.1 earthquake (Fourbanne karst aquifer, Jura outermost thrust unit, eastern France), Geophys. Res. Lett. 32(18): 1-5.
Chen, S. C., & Shi, D. R. (2000). A documentary of soil and water hazard and rehabilitation of slope failure after the Chi-Chi earthquake. Nantou City: Soil and Water Conservation Bureau. (in Chinese)
Chia Y., Chiu J.J., Chiang Y.H., Lee T.P., Wu Y.M., Horng M.J. (2008) Implications of coseismic groundwater level changes observed at multiple-well monitoring stations, Geophys. J. Int. 172(1): 293-301.
Chia, Y., Chiu, J. J., Chiang, Y. H., Lee, T. P., & Liu, C. W. (2008a). Spatial and temporal changes of groundwater level induced by thrust faulting. Pure Appl. Geophys., 165(1), 5-16.
Chia, Y., Chiu, J. J., Chiang, Y. H., Lee, T. P., Wu, Y. M., Horng, M. J. (2008b). Implications of coseismic groundwater level changes observed at multiple-well monitoring stations. Geophys. J. Int., 172(1), 293–301.
Chia, Y., Wang, Y. S., Chiu, J. J., Liu, C. W. (2001). Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan. Bull. Seism. Soc. Am., 91(5), 1062-1068.
Cooper H.H., Bredehoeft J.D., Papadopulos I.S., Bennett R.R. (1965) The response of well-aquifer systems to seismic waves, J. Geophys. Res. 70(16): 3915-3926
Corapcioglu, M.Y. & Bear, J. (1983), A mathematical model for regional land subsidence due to pumping, Water Resources Research, 19(4), 895-908.
Cox, S.C., Rutter, H.K., Sims, A., Manga, M., Weir, J.J., Ezzy, T., et al. (2012). Hydrological effects of the MW 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand. N.Z. J. Geol. Geophys., 55(3), 231–247.
Cucci L., Tertulliani A. (2015) The hydrological signature of a seismogenic source: coseismic hydrological changes in response to the 1915 Fucino (Central Italy) earthquake, Geophys. J. Int, 200(3): 1374-1388.
Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441, 1135-1138.
Ge, S., & Stover, S. C. (2000). Hydrodynamic response to strike- and dip-slip faulting in a half space. J. Geophys. Res., 105(B11), 25513-25524.
Grecksch, G., Roth, F., & Kümpel, H. J. (1999). Co-seismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophys. J. Int., 138(2), 470-478.
Hung, J. J. (2000). Chi-Chi earthquake induced landslides in Taiwan. Earthquake Engineering and Engineering Seismology, 2(2), 25-33.
Igarashi G, Wakita H, Sato T (1992) Precursory and Coseismic Anomalies in Well Water Levels Observed for the February 2, 1992 Tokyo Bay Earthquake, Geophys. Res. Lett. 19(15): 1583-1586.
Itaba S, Koizumi N, Matsumoto N, Takahashi M, Sato T, Ohtani R, Kitagawa Y, Kuwahara Y, Sato T, Ozawa K (2008) Groundwater level changes related to the ground shaking of the Noto Hanto Earthquake in 2007, Earth Planets Space 60(12): 1153-1159, doi:10.1186/BF03352872
Jang CS, Liu CW, Chia Y, Cheng, LH, Chen YC (2008) Changes in hydrogeological properties of the River Choushui alluvial fan aquifer due to the 1999 Chi-Chi earthquake, Taiwan, Hydrogeology Journal, 16(2): 389-397, doi 10.1007/s10040-007-0233-6
Jónsson S, Segall P, Pedersen R, Björnsson G (2003) Post-earthquake ground movements correlated to pore-pressure transients, Nature 424(6945): 179-183, doi 10.1038/nature01776
King C.Y. & Igarashi G. (1999). Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. J. Geophys. Res., 104(B6), 13073-13082.
King C.Y. & Igarashi G. (2002) Earthquake-related hydrologic and geochemical changes, Int. Handbook of Earthq. Engg. Seismol. 81(A): 637–645.
King C.Y., Basler D., Presser T.S., Evans W.C., White L.D. (1994). In search of earthquake-related hydrologic and chemical changes along Hayward fault. Appl. Geochem., 9(1), 83-91.
King C.Y., Zhang W., Zhang Z. (2006) Earthquake-induced Groundwater and Gas Changes, Pure and Applied Geophysics 163(4): 633-645.
Kitagawa Y., Koizumi N., Takahashi M., Matsumoto N., Sato T. (2006) Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0), Earth Planets Space 58(2): 173–179.
Koizumi N., Kano Y., Kitagawa Y., Sato T., Takahashi M., Nishimura S., Nishida R. (1996) Groundwater Anomalies Associated with the 1995 Hyogo-ken Nanbu Earthquake. J Phys Earth 44(4): 373-380.
Koizumi N., Lai W.C., Kitagawa Y., Matsumoto N. (2004) Comment on “Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan” by Min Lee et al., Geophys. Res. Lett. 31: L13603.
Lee M., Liu T.K., Ma K.F., Chang Y.M. (2002) Coseismic hydrological changes with dislocation of the September 21, 1999 Chi-Chi earthquake, Taiwan, Geophys. Res. Lett. 29(17): 5-1-5-4.
Lin, M. L., Yu, F. C., Fan, J. C. (2000). Preliminary evaluation and analysis of potential debris flow after the Chi-Chi earthquake hazard. Taipei: National Center for Research on Earthquake Engineering. (in Chinese)
Liu L.B., Roeloffs E.A., Zheng X.Y. (1989) Seismically induced water level fluctuations in the Wali well, Beijing, China, J. Geophys. Res. 94(B7): 9453–9462.
Manga, M. (2001). Origin of postseismic streamflow changes inferred from baseflow recession and magnitude-distance relations. J. Geophys. Res., 28(10), 2133-2136.
Manga, M., & Rowland, J. C. (2009). Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids, 9(3), 237–250.
Manga, M., Beresnev, I., Brodsky, E.E., Elkhoury, J.E., Elsworth, D., Ingebritsen, S.E., et al., (2012). Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys., 50(2), RG2004.
Manga, M., Brodsky, E. E., & Boone, M. (2003). Response of streamflow to multiple earthquakes. Geophys. Res. Lett., 30(5), 1214.
Matsumoto N, Kitagawa G, Roeloffs EA (2003) Hydrological response to earthquakes in the Haibara well, central Japan – I. Water level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses, Geophys. J. Int. 155(3): 885–898, doi 10.1111/j.1365-246X.2003.02103.x
Mohr, C. H., Manga, M., Wang, C. Y., & Korup, O. (2017). Regional changes in streamflow after a megathrust earthquake. Earth Planet. Sci. Lett., 458, 418-428.
Mohr, C. H., Manga, M., Wang, C. Y., Kirchner, J. W., & Bronstert A. (2015). Shaking water out of soil. Geology, 43(3), 207-210.
Mohr, C. H., Montgomery, D. R., Huber, A., Bronstert, A., & Iroumé, A. (2012). Streamflow response in small upland catchments in the Chilean coastal range to the MW 8.8 Maule earthquake on 27 February 2010. J. Geophys. Res., 117(F2), F02032.
Montgomery, D. R., & Manga, M. (2003). Streamflow and water well responses to earthquakes. Science, 300(5628), 2047-2049.
Montgomery, D. R., Greenberg, H. M., & Smith, D. T. (2003). Streamflow response to the Nisqually earthquake. Earth Planet. Sci. Lett., 209(1-2), 19-28.
Muir-Wood, R., & King, G. C. P. (1993). Hydrological signatures of earthquake strain. J. Geophys. Res., 98(B12), 22035-22068.
Ohno M, Wakita H, Kanjo K (1997) A water well sensitive to seismic waves, Geophys. Res. Lett. 24(6): 691–694.
Palciauskas VV, Domenico PA (1989) Fluid pressure in deforming porous rocks, Water Resour. Res. 25(2): 203–213.
Palciauskas VV, Domenico PA (1989) Fluid pressure in deforming porous rocks, Water Resour. Res. 25(2): 203–213, doi 10.1029/WR025i002p00203
Quilty EG, Roeloffs EA (1997) Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California, Bull. Seismol. Soc. Am. 87(2): 310–317
Rice J R, Cleary M P (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys. 14(2): 227–241.
Roeloffs EA (1996) Poroelastic techniques in the study of earthquake-related hydrologic phenomena, Adv. Geophys. 37: 135–195.
Roeloffs EA, Burford SS, Riley FS, Records AW (1989) Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California, J. Geophys. Res. 94(B9): 12387-12402.
Roeloffs EA, Quilty EG, Scholtz CH (1997) Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, Earthquake, Pure Appl. Geophys. 149(1): 21-60.
Roeloffs, E. A. (1988). Hydrologic precursors to earthquakes: a review. Pure Appl. Geophys., 126(2), 177-209.
Roeloffs, E. A. (1998). Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res., 103(B1), 869-889.
Rojstaczer S (1988) Intermediate period response of water levels in wells to crustal strain: sensitivity and noise level, J. Geophys. Res. 93(B11): 13619-13634.
Rojstaczer S, Wolf S (1992) Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Geology 20(3): 211–214.
Rojstaczer S, Wolf S, Michel R (1995) Permeability enhancement in the shallow crust as a cause of earthquake induced hydrological changes, Nature 373(6511): 237–239.
Rojstaczer, S., & Wolf, S. (1992). Permeability changes associated with large earthquakes: an example from Loma Prieta, California. Geology, 20(3), 211-214.
Rojstaczer, S., Wolf, S., & Michel, R. (1995). Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrologic changes. Nature, 373, 237-239.
Sato T, Matsumoto N, Kitagawa Y, Koizumi N, Takahashi M, Kuwahara Y, Ito H, Cho A, Satoh T, Ozawa K, Tasaka S (2004) Changes in groundwater level associated with the 2003 Tokachi-oki earthquake, Earth Planets Space 56(3): 395–400.
Sato T, Sakai R, Furuya K, Kodama T (2000). Coseismic spring flow changes associated with the 1995 Kobe earthquake, Geophys. Res. Lett. 27(8): 1219–1222, doi 10.1029/1999GL011187
Shi Z, Wang G, Liu C (2013) Co-Seismic Groundwater Level Changes Induced by the May 12, 2008 Wenchuan Earthquake in the Near Field, Pure and Appl. Geophys. 170(11): 1773-1783.
Shi Z, Wang G, Wang CY, Manga M, Liu C (2014) Comparison of hydrological responses to the Wenchuan and Lushan earthquakes, Earth Planet. Sci. Lett. 391: 193-200, doi:10.1016/j.epsl.2014.01.048
Terzaghi K (1926) Principles of soil mechanics: A summary of experimental studies of clay and sand. McGraw-Hill
Thomas HE (1940) Fluctuations of ground-water levels during the earthquakes of November 10, 1938, and January 24, 1939, Bull. Seismol. Soc. Am. 30(2): 93-97
Wakita, H (1975) Water wells as possible indicators of tectonic strain, Science 189(4202): 553-555.
Waller, R.M., 1966a, Effects of the March 1964 Alaska earthquake on the hydrology of south-central Alaska: U.S. Geological Survey Professional Paper 544–A, 28 p.
Waller, R.M., 1966b, Effects of the March 1964 Alaska earthquake on the hydrology of the Anchorage area: U.S. Geological Survey Professional Paper 544–B, 18 p., 1 sheet, scale 1:61,680.
Wang CY, Manga M, Dreger D, Wong A (2004b) Streamflow increase due to rupturing of hydrothermal reservoirs: Evidence from the 2003 San Simeon, California, Earthquake, Geophys. Res. Lett. 311(10):1-5 , doi 10.1029/2004GL020124
Wang, C. Y., & Manga, M. (2010). Hydrologic responses to earthquakes and a general metric. Geofluids, 10(1-2), 206-216.
Wang, C. Y., Cheng, L. H., Chin, C. V., & Yu, S. B. (2001). Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 29(9), 831-834.
Wang, C. Y., Manga, M., Dreger, D., & Wong, A. (2004a). Streamflow increase due to rupturing of hydrothermal reservoirs: evidence from the 2003 San Simeon, California, earthquake. Geophys. Res. Lett., 31(10), L10502.
Wang, C. Y., Wang, C. H., & Manga, M. (2004b). Co-seismic release of water from mountains: evidence from the 1999 (Mw= 7.5) Chi-Chi, Taiwan, earthquake. Geology, 32(9), 769-772.
Weingarten, M., & Ge, S. (2014). Insights into water level response to seismic waves: a 24 year high-fidelity record of global seismicity at Devils Hole. Geophys. Res. Lett., 41(1), 74–80.
Yu, S. B., Kuo, L. C., Hsu, Y. J., Su, H. H., Liu, C. C., Hou, C. S., et al. (2001). Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91(5), 995-1012.
大氣水文研究資料庫:https://dbahr.narlabs.org.tw/Default.aspx
中央地質調查所水文地質資料庫:http://hydro.moeacgs.gov.tw/
中央氣象局,2010,地震活動彙整:http://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm
中央氣象局,2016,地震活動彙整:http://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm
日月潭國家風景區管理處 (明潭水庫):https://www.sunmoonlake.gov.tw/ScenicSpotDetail.aspx?Cond=40941373-172b-4d7c-98fa-8a83ab0920cd
水利署地理資訊倉儲中心:https://gic.wra.gov.tw/gic/Water/Space/WaterMain.aspx
台灣地震科學中心,2016:http://tec.earth.sinica.edu.tw/new_web/index.php
讓我們看河去(中央管河川):https://www.wra.gov.tw/6950/7170/7356/7386/7387/
觀測資料查詢系統(CODiS):http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
CWB (2006) Earthquake Seismicity, Central Weather Bureau: http://www.cwb.gov.tw/V7e/earthquake/seismic.htm
IRIS, Moment Tensor Product Query: http://ds.iris.edu/spud/momenttensor
USGS (2006) M 7.1 - Taiwan region, Earthquake Hazards Program: http://earthquake.usgs.gov/earthquakes/eventpage/usp000f114#executive
USGS, Earthquake Hazards Program: https://earthquake.usgs.gov/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70658-
dc.description.abstract世界各地發生的強震經常導致明顯的水文變化,本研究依據現地觀測紀錄,探討強震引發的河川流量增減與地下水位升降變化之時空分布,並針對不同含水層於地震期間所記錄到的水位變化,設計簡化的二維模型,使用數值近似方法進行模擬分析,探討斷層位移時水文地質特性對地層孔隙水壓隨時間變化的影響。
1999年M7.6集集地震發生後1至4天引發了台灣中部地區23個水文觀測站的流量出現異常變化,其中22站於震後記錄到流量增加超過60%的現象,推測是山區岩層受到地震震動影響產生裂隙,加速地下水補注臨近河川所致;也可能因為斷層錯動造成地層壓縮,引發孔隙水壓上升所致。距離震央最近位於水里溪上的測站,則於震後記錄到河川流量大幅減少96%,長期觀測資料分析指出,震前該站流量通常大於上游測站流量,但是震後該站流量卻低於上游測站流量,並維持長達8個月之久。震後河川流量減少的原因可能是逆衝斷層錯動時,造成震央地區地殼伸張,降低地層孔隙水壓,引起河川水流下滲河床所致。
台灣南部地區於2016年及2010分別發生M6.4美濃地震及M6.3甲仙地震,全台各有300口及284口觀測井出現同震地下水位變化,其中西南平原地區最多。兩起地震引發了超過80%的同震地下水位上升,間接指出地震發生時大多淺處地層都受到擠壓。在空間分布上,少數複井觀測站在不同深度的井,分別記錄到同震水位上升及同震水位下降的情形,因此地層同震應變可能會隨深度出現明顯變化。本研究利用GPS資料與同震地下水位變化進行比對,發現出現同震地下水位有升有降的觀測站,多位在GPS記錄中位移量相對較大之地區,顯示位移明顯處垂直方向的孔隙水壓變化也較為複雜。
強震引發的地下水位變化,在不同的含水層具有不同的回復特性,自由含水層的同震地下水位變化,震後通常會快速回復,而受壓含水層的同震變化則可持續數月甚至更久。長期的地下水位紀錄分析顯示,觀測井的水文地質特性可能造成同震變化的差異。本研究使用有限元素分析軟體ABAQUS模擬斷層位移時的孔隙水壓變化,分析結果顯示,地層的同震孔隙水壓變化幅度與其壓縮係數密切相關。自由含水層的地下水面與大氣壓力相通,因此同震變化通常會在一天之內迅速回復;而受壓含水層的孔隙水壓消散速率受控於上覆阻水層的水力傳導係數,其同震變化回復速率相當緩慢,可長達一年以上;但是如果地震造成阻水層出現裂隙,將會加速孔隙水壓的消散。因此含水層的水文地質特性,是地震引發的地下水位變化量及其消散速率的重要控制因素。
zh_TW
dc.description.abstractEarthquakes induced hydrologic changes have been reported worldwide. This study analyzed the spatial and temporal changes of streamflow changes and groundwater-level changes induced by strong earthquakes based on field observations. Simplified two-dimensional models were used to simulate the temporal changes of pore-pressure in different formations due to fault displacement.
One to four days after the 1999 MW7.6 Chi-Chi earthquake, changes in streamflow have been observed at 23 stream gauges in central Taiwan. Post-earthquake streamflow increases over 60% were recorded at 22 gauges in four watersheds. The increase in groundwater discharge to the river after the earthquake can be attributed to rock fracturing by seismic shaking as well as pore pressure rise due to compressive strain induced by fault movement. A large decrease in discharge was recorded immediately after the earthquake at the gauge near the earthquake epicenter. Analysis of long-term hydrological data indicated that the post-earthquake discharge at the gauge reduced to a level smaller than that at an upstream gauge for eight months. Such a streamflow decrease might have been caused by a discharge to the streambed due to a co-seismic decrease in pore pressure induced by crustal extension during the rupture of the thrust fault.
Co-seismic changes in groundwater level were recorded respectively at 300 and 284 monitoring wells in response to the 2016 M6.4 earthquake and 2010 M6.3 earthquake occurred in southern Taiwan. Most of the changes occurred in the southwest plain of Taiwan. More than 80% of the changes are groundwater-level rise for both earthquakes, indicating co-seismic compression dominant in the shallow crust. Some multiple-well stations recorded co-seismic rise and co-seismic fall at different well depths, revealing co-seismic strain varies significantly in the vertical direction. The multiple-well stations that recorded co-seismic rise and co-seismic fall are located in the area where relatively large displacements were measured by the GPS. This coincidence indicates that the reversal of the polarity of groundwater-level changes in the vertical distribution is related to the local displacement due to the earthquake.
Co-seismic groundwater-level changes show different recovery processes in different aquifers. Co-seismic changes usually recover immediately after the earthquake in an unconfined aquifer, while they sustain for months or longer in a confined aquifer. Long-term data analysis indicated that variations in co-seismic groundwater-level changes at different monitoring wells are attributed to hydrogeological characteristics of the well site. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the formation compressibility. In the unconfined aquifer, the recovery rate is rapid, usually from a few minutes to a few hours, due to the hydrostatic condition at the water table. In the confined aquifer, the pore pressure dissipation or recovery rate is slow and may last for a year or longer due to the retardation of less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure in the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:34:01Z (GMT). No. of bitstreams: 1
ntu-107-D02224004-1.pdf: 7593412 bytes, checksum: c06add5de5afbe8475719e62366bd9f1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 現地觀測資料 2
1.2.1 水文資料 2
1.2.2 地震資料 5
1.2.3 雨量及大氣壓力資料 7
1.3 研究方法 8
1.3.1 地震案例探討 8
1.3.2 地下水觀測井之長期資料分析 8
1.3.3 數值模擬 8
第二章 文獻回顧 9
2.1 地震引發之河川流量變化 10
2.2 地震引發之地下水位時空變化 11
第三章 集集地震引發之河川流量變化 13
3.1 集集地震與前人研究之水文變化空間分布 13
3.1.1 同震地下水位變化 15
3.1.2 震後流量變化之空間分布 17
3.2 中部地區之水文與測站 18
3.2.1 雨量 18
3.2.2 流域與測站 19
3.3 台灣中部地區震後河川流量增加的變化 22
3.3.1 大安溪流域 24
3.3.2 大甲溪流域 25
3.3.3 烏溪流域 26
3.3.4 濁水溪流域 26
3.4 水里橋站震後流量減少的變化 28
3.4.1 集集地震前後之流量變化 28
3.4.2 集集地震後長期流量減少之變化 29
第四章 同震地下水位變化之空間分布 31
4.1 美濃地震引發之同震地下水位變化 33
4.1.1 美濃地震 33
4.1.2 同震地下水位反應及其區域分布 36
4.1.3 地下水觀測井水位變化分析 39
4.2 甲仙地震引發之同震地下水位變化 43
4.2.1 甲仙地震 43
4.2.2 同震地下水位反應及區其域分布 45
4.2.3 地下水觀測井水位變化分析 47
第五章 同震地下水位變化案例與長期同震變化分析 51
5.1 地下水觀測井同震水位變化 54
5.1.1 恆春地震引發赤山三號井之同震水位變化 54
5.1.2 仁愛地震引發東和三號井與社寮井之同震地下水位變化 56
5.1.3 集集地震引發好修三號井、田中二號井、鯉魚二號井之同震水位變化 59
5.2 坪頂一號井長期同震水位變化分析 63
5.2.1 觀測井之設置與區域地質概況 63
5.2.2 同震水位變化分析 65
5.3 六甲三號井長期同震水位變化分析 68
5.3.1 觀測井之設置與區域地質概況 68
5.3.2 同震水位變化分析 70
5.4 花崗山井長期同震水位變化分析 73
5.4.1 觀測井之設置與區域地質概況 73
5.4.2 同震水位變化分析 74
第六章 斷層移動引發地層孔隙水壓變化之概念模式分析 77
6.1 地質概念模型 77
6.2 數學模型 81
6.3 ABAQUS有限元素分析軟體 85
6.4 地層位移引發之孔隙水壓變化及其消散過程之模擬分析 87
6.4.1 自由含水層 88
6.4.2 受壓含水層 90
6.4.3 破裂之受壓含水層 91
6.5 數值模擬結果與現地觀測紀錄之比較 94
第七章 討論 96
7.1 震後河川流量變化的機制 96
7.2 同震地下水位變化之探討與區域分布 98
第八章 結論 100
8.1 結論 100
8.2 建議 102
參考文獻 103
附錄A 數值分析過程之輸入檔 113
A.1 自由含水層(均質) 113
A.2 自由含水層(異質) 117
A.3 受壓含水層 121
A.4 破裂之受壓含水層 125
dc.language.isozh-TW
dc.subject模擬zh_TW
dc.subject空間zh_TW
dc.subject時間zh_TW
dc.subject流量zh_TW
dc.subject地下水位zh_TW
dc.subject同震zh_TW
dc.title地震引發水文變化時空分布之研究zh_TW
dc.titleTemporal and Spatial Distribution of Hydrological Changes Induced by Earthquakesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee李建成,邱永嘉,曾泰琳,劉聰桂
dc.subject.keyword同震,地下水位,流量,時間,空間,模擬,zh_TW
dc.subject.keywordco-seismic,groundwater level,streamflow,temporal,spatial,simulation,en
dc.relation.page129
dc.identifier.doi10.6342/NTU201802920
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
Appears in Collections:地質科學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
7.42 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved