Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳青周
dc.contributor.authorShih-Hsiang Huangen
dc.contributor.author黃士翔zh_TW
dc.date.accessioned2021-06-17T04:33:40Z-
dc.date.available2023-09-06
dc.date.copyright2018-09-06
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citationAgarwal, E., Brattain, M. G., & Chowdhury, S. (2013). Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal, 25(8), 1711-1719. doi:10.1016/j.cellsig.2013.03.025
Bellacosa, A., Kumar, C. C., Di Cristofano, A., & Testa, J. R. (2005). Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res, 94, 29-86. doi:10.1016/s0065-230x(05)94002-5
Bender, E. (2014). Epidemiology: The dominant malignancy. Nature, 513(7517), S2-3. doi:10.1038/513S2a
Brugge, J., Hung, M. C., & Mills, G. B. (2007). A new mutational AKTivation in the PI3K pathway. Cancer Cell, 12(2), 104-107. doi:10.1016/j.ccr.2007.07.014
Cantley, L. C., & Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A, 96(8), 4240-4245.
Chin, Y. R., Yoshida, T., Marusyk, A., Beck, A. H., Polyak, K., & Toker, A. (2014). Targeting Akt3 signaling in triple-negative breast cancer. Cancer Res, 74(3), 964-973. doi:10.1158/0008-5472.Can-13-2175
Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., 3rd, . . . Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 292(5522), 1728-1731. doi:10.1126/science.292.5522.1728
Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F., & Birnbaum, M. J. (2001). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem, 276(42), 38349-38352. doi:10.1074/jbc.C100462200
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 70(2), 440-446. doi:10.1158/0008-5472.Can-09-1947
Cristiano, B. E., Chan, J. C., Hannan, K. M., Lundie, N. A., Marmy-Conus, N. J., Campbell, I. G., . . . Pearson, R. B. (2006). A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. Cancer Res, 66(24), 11718-11725. doi:10.1158/0008-5472.Can-06-1968
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378(6559), 785-789. doi:10.1038/378785a0
Cross, D. A., Ashton, S. E., Ghiorghiu, S., Eberlein, C., Nebhan, C. A., Spitzler, P. J., . . . Pao, W. (2014). AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov, 4(9), 1046-1061. doi:10.1158/2159-8290.Cd-14-0337
Easton, R. M., Cho, H., Roovers, K., Shineman, D. W., Mizrahi, M., Forman, M. S., . . . Birnbaum, M. J. (2005). Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol, 25(5), 1869-1878. doi:10.1128/mcb.25.5.1869-1878.2005
Eck, M. J., & Yun, C. H. (2010). Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim Biophys Acta, 1804(3), 559-566. doi:10.1016/j.bbapap.2009.12.010
Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., . . . Janne, P. A. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316(5827), 1039-1043. doi:10.1126/science.1141478
Ercan, D., Xu, C., Yanagita, M., Monast, C. S., Pratilas, C. A., Montero, J., . . . Janne, P. A. (2012). Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov, 2(10), 934-947. doi:10.1158/2159-8290.Cd-12-0103
Girard, N. (2018). Optimizing outcomes in EGFR mutation-positive NSCLC: which tyrosine kinase inhibitor and when? Future Oncol. doi:10.2217/fon-2017-0636
Grottke, A., Ewald, F., Lange, T., Norz, D., Herzberger, C., Bach, J., . . . Jucker, M. (2016). Downregulation of AKT3 Increases Migration and Metastasis in Triple Negative Breast Cancer Cells by Upregulating S100A4. PLoS One, 11(1), e0146370. doi:10.1371/journal.pone.0146370
Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung cancer. N Engl J Med, 359(13), 1367-1380. doi:10.1056/NEJMra0802714
Howlader N, N. A., Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z,Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. (2014). SEER Cancer Statistics Review, 1975-2011. Retrieved from
Jacobsen, K., Bertran-Alamillo, J., Molina, M. A., Teixido, C., Karachaliou, N., Pedersen, M. H., . . . Rosell, R. (2017). Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nat Commun, 8(1), 410. doi:10.1038/s41467-017-00450-6
Kaidanovich-Beilin, O., & Woodgett, J. R. (2011). GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci, 4, 40. doi:10.3389/fnmol.2011.00040
Kohno, T., Nakaoku, T., Tsuta, K., Tsuchihara, K., Matsumoto, S., Yoh, K., & Goto, K. (2015). Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res, 4(2), 156-164. doi:10.3978/j.issn.2218-6751.2014.11.11
Lanczky, A., Nagy, A., Bottai, G., Munkacsy, G., Szabo, A., Santarpia, L., & Gyorffy, B. (2016). miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat, 160(3), 439-446. doi:10.1007/s10549-016-4013-7
Lee, R. S., House, C. M., Cristiano, B. E., Hannan, R. D., Pearson, R. B., & Hannan, K. M. (2011). Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity. Enzyme Res, 2011, 720985. doi:10.4061/2011/720985
Li, B., Xu, W. W., Lam, A. K. Y., Wang, Y., Hu, H. F., Guan, X. Y., . . . Cheung, A. L. M. (2017). Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget, 8(24), 38755-38766. doi:10.18632/oncotarget.16333
Lin, H. P., Lin, C. Y., Huo, C., Jan, Y. J., Tseng, J. C., Jiang, S. S., . . . Chuu, C. P. (2015). AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2. Oncotarget, 6(29), 27097-27112. doi:10.18632/oncotarget.4553
Lin., Lin., Shih, J. Y., Huang, W. J., Chao, S. W., Chang, Y. L., & Chen, C. C. (2015). DUSP1 expression induced by HDAC1 inhibition mediates gefitinib sensitivity in non-small cell lung cancers. Clin Cancer Res, 21(2), 428-438. doi:10.1158/1078-0432.Ccr-14-1150
Ludovini, V., Bianconi, F., Pistola, L., Chiari, R., Minotti, V., Colella, R., . . . Crino, L. (2011). Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol, 6(4), 707-715. doi:10.1097/JTO.0b013e31820a3a6b
Ma, Y., She, X. G., Ming, Y. Z., Wan, Q. Q., & Ye, Q. F. (2015). MicroRNA144 suppresses tumorigenesis of hepatocellular carcinoma by targeting AKT3. Mol Med Rep, 11(2), 1378-1383. doi:10.3892/mmr.2014.2844
Manning, B. D., & Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. Cell, 169(3), 381-405. doi:10.1016/j.cell.2017.04.001
Mayekar, M. K., & Bivona, T. G. (2017). Current Landscape of Targeted Therapy in Lung Cancer. Clin Pharmacol Ther, 102(5), 757-764. doi:10.1002/cpt.810
Nan, X., Xie, C., Yu, X., & Liu, J. (2017). EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer. Oncotarget, 8(43), 75712-75726. doi:10.18632/oncotarget.20095
Nitulescu, G. M., Margina, D., Juzenas, P., Peng, Q., Olaru, O. T., Saloustros, E., . . . Tsatsakis, A. M. (2016). Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol, 48(3), 869-885. doi:10.3892/ijo.2015.3306
Ohashi, K., Sequist, L. V., Arcila, M. E., Moran, T., Chmielecki, J., Lin, Y. L., . . . Pao, W. (2012). Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A, 109(31), E2127-2133. doi:10.1073/pnas.1203530109
Oxnard, G. R., Lo, P. C., Nishino, M., Dahlberg, S. E., Lindeman, N. I., Butaney, M., . . . Janne, P. A. (2013). Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J Thorac Oncol, 8(2), 179-184. doi:10.1097/JTO.0b013e3182779d18
Park, K., Tan, E. H., O'Byrne, K., Zhang, L., Boyer, M., Mok, T., . . . Paz-Ares, L. (2016). Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol, 17(5), 577-589. doi:10.1016/s1470-2045(16)30033-x
Posner, I., Engel, M., Gazit, A., & Levitzki, A. (1994). Kinetics of inhibition by tyrphostins of the tyrosine kinase activity of the epidermal growth factor receptor and analysis by a new computer program. Mol Pharmacol, 45(4), 673-683.
Rotow, J., & Bivona, T. G. (2017). Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer, 17(11), 637-658. doi:10.1038/nrc.2017.84
Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101. doi:10.1126/science.1106148
Saxton, R. A., & Sabatini, D. M. (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell, 168(6), 960-976. doi:10.1016/j.cell.2017.02.004
Sequist, L. V., Waltman, B. A., Dias-Santagata, D., Digumarthy, S., Turke, A. B., Fidias, P., . . . Engelman, J. A. (2011). Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med, 3(75), 75ra26. doi:10.1126/scitranslmed.3002003
Sharma, S. V., Bell, D. W., Settleman, J., & Haber, D. A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 7(3), 169-181. doi:10.1038/nrc2088
Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J Clin, 68(1), 7-30. doi:10.3322/caac.21442
Silva, A., Yunes, J. A., Cardoso, B. A., Martins, L. R., Jotta, P. Y., Abecasis, M., . . . Barata, J. T. (2008). PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest, 118(11), 3762-3774. doi:10.1172/jci34616
Soria, J. C., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., Lee, K. H., . . . Ramalingam, S. S. (2018). Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med, 378(2), 113-125. doi:10.1056/NEJMoa1713137
Sos, M. L., Koker, M., Weir, B. A., Heynck, S., Rabinovsky, R., Zander, T., . . . Thomas, R. K. (2009). PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res, 69(8), 3256-3261. doi:10.1158/0008-5472.Can-08-4055
Stottrup, C., Tsang, T., & Chin, Y. R. (2016). Upregulation of AKT3 Confers Resistance to the AKT Inhibitor MK2206 in Breast Cancer. Mol Cancer Ther, 15(8), 1964-1974. doi:10.1158/1535-7163.Mct-15-0748
Tabara, K., Kanda, R., Sonoda, K., Kubo, T., Murakami, Y., Kawahara, A., . . . Ono, M. (2012). Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells. PLoS One, 7(7), e41017. doi:10.1371/journal.pone.0041017
Terai, H., Soejima, K., Yasuda, H., Nakayama, S., Hamamoto, J., Arai, D., . . . Betsuyaku, T. (2013). Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol Cancer Res, 11(7), 759-767. doi:10.1158/1541-7786.Mcr-12-0652
Turner, K. M., Sun, Y., Ji, P., Granberg, K. J., Bernard, B., Hu, L., . . . Zhang, W. (2015). Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci U S A, 112(11), 3421-3426. doi:10.1073/pnas.1414573112
van der Vos, K. E., & Coffer, P. J. (2011). The extending network of FOXO transcriptional target genes. Antioxid Redox Signal, 14(4), 579-592. doi:10.1089/ars.2010.3419
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M., & Bilanges, B. (2010). The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol, 11(5), 329-341. doi:10.1038/nrm2882
Wang, S., Song, Y., & Liu, D. (2017). EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett, 385, 51-54. doi:10.1016/j.canlet.2016.11.008
Webb, A. E., & Brunet, A. (2014). FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci, 39(4), 159-169. doi:10.1016/j.tibs.2014.02.003
Weng, C.-H., Chen, L.-Y., Lin, Y.-C., Shih, J.-Y., Lin, Y.-C., Tseng, R.-Y., . . . Chen, C.-C. (2018). Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene.
West, K. A., Castillo, S. S., & Dennis, P. A. (2002). Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat, 5(6), 234-248.
Wu, S. G., & Shih, J. Y. (2018). Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer, 17(1), 38. doi:10.1186/s12943-018-0777-1
Xue, G., & Hemmings, B. A. (2013). PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst, 105(6), 393-404. doi:10.1093/jnci/djs648
Yasuda, H., Kobayashi, S., & Costa, D. B. (2012). EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol, 13(1), e23-31. doi:10.1016/s1470-2045(11)70129-2
Yu, H. A., Tian, S. K., Drilon, A. E., Borsu, L., Riely, G. J., Arcila, M. E., & Ladanyi, M. (2015). Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. JAMA Oncol, 1(7), 982-984. doi:10.1001/jamaoncol.2015.1066
Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11(3), 217-227. doi:10.1016/j.ccr.2006.12.017
Zappa, C., & Mousa, S. A. (2016). Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res, 5(3), 288-300. doi:10.21037/tlcr.2016.06.07
Zhang, Z., Lee, J. C., Lin, L., Olivas, V., Au, V., LaFramboise, T., . . . Bivona, T. G. (2012). Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet, 44(8), 852-860. doi:10.1038/ng.2330
Zhou, W., & Christiani, D. C. (2011). East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer, 30(5), 287-292.
Zhuang, J., Ye, Y., Wang, G., Ni, J., He, S., Hu, C., . . . Lv, Z. (2017). MicroRNA497 inhibits cellular proliferation, migration and invasion of papillary thyroid cancer by directly targeting AKT3. Mol Med Rep, 16(5), 5815-5822. doi:10.3892/mmr.2017.7345
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70647-
dc.description.abstract肺癌高居全球癌症死亡之首位。在肺癌治療中,EGFR-TKI為非小細胞肺癌有EGFR活化突變之第一線治療,然而病人在使用9-14個月後會產生acquired resistance,因此了解EGFR-TKI之抗藥性機轉是改善臨床療效之重要課題。為了深入研究抗藥性細胞特性及機轉,我們培養出第一代EGFR-TKI抗藥性細胞HCC827/IR (IRESSA resistance)及第三代EGFR-TKI抗藥性細胞H1975/AR (AZD9291 resistance),均具有EMT之特性。
在這篇研究中,抗藥性細胞之EGFR表現及活性均降低,其他RTK如AXL、FGFR1之表現在HCC827/IR亦高度上升。HCC827/IR (非T790M突變) 及H1975/AR (非C797S突變) 之抗藥性方式為“off target resistance”。EGFR-TKI在parental細胞抑制AKT活性 (p-AKT) 之效果比resistant細胞好。RNA-seq之分析發現,AKT3在抗藥性細胞之表現均高度上升,Kaplan Meier plotter分析亦發現,AKT3高度表現之肺腺癌病人預後較差。在HCC827/IR knockdown AKT3可降低細胞之爬行且增加E-cadherin之表現,亦經由抑制之細胞S週期降低細胞之生長;在H1975/AR knockdown AKT3,可增加AZD9291對AKT活性 (p-AKT) 之抑制作用。利用免疫沉澱法證明AKT3對AKT之活性有貢獻,gefitinib及AZD9291皆無法抑制AKT3之活性 (p-AKT3)。HCC827/IR處理gefitinib或H1975/AR處理AZD9291皆會增加AKT3蛋白。因此,AKT3可能可成為預測EGFR-TKI療效之生物標記,其表現量之上升是EGFR-TKI之抗藥性機轉之一。此外,合併AZD9291與AKT inhibitor對於抑制H1975/AR之生長具有協同作用。
zh_TW
dc.description.abstractLung cancer is the leading cause of cancer deaths worldwide, and EGFR-TKI is the first-line treatment for non-small cell lung cancer (NSCLC) harbouring EGFR activation mutation. However, most patients develop acquired resistance within 9–14 months. Therefore, it is critical to explore the mechanisms of drug resistance to improve treatment efficacy. Two resistant cells, HCC827/IR (IRESSA resistance) and H1975/AR (AZD9291 resistance) exhibiting EMT phenotypes were generated to investigate the molecular and cellular characteristics of the EGFR-TKI acquired resistance.
The expression and activation of EGFR were reduced in both resistant cells. Upregulation of AXL and FGFR1 were found in HCC827/IR but not H1975/AR cells. HCC827/IR (without T790M) and H1975/AR (without C797S) showed “off target resistance”. Activation of AKT (p-AKT) in both parental cells was more sensitive to EGFR-TKI than that in resistant cells. RNA-seq revealed that AKT3 was upregulated in both resistant cells. High expression of AKT3 was predicted to correlate with the poor survival of lung adenocarcinoma patients. Knockdown of AKT3 in HCC827/IR cells inhibited cell migration and increased the protein expression of E-cadherin, as well as inhibited S phase population to reduce cell proliferation. Knockdown of AKT3 in H1975/AR cells enhanced AZD9291-induced inhibition on AKT activation (p-AKT). Immunoprecipitation of AKT3 in both resistant cells demonstrated its involvement in AKT activation, and AKT3 activation (p-AKT3) was not sensitive to gefitinib and AZD9291 inhibition in resistant cells. We also found that protein but not mRNA of AKT3 was upregulated in gefitinib-treated HCC827/IR cells and AZD9291-treated H1975/AR cells. Therefore, AKT3 might serve as a predictive biomarker for EGFR-TKIs therapy, and its upregulation might be one of the mechanisms for EGFR-TKIs acquired resistance. Besides, combination of AZD9291 with AKT inhibitor elicited synergistic inhibition on cell viability of H1975/AR cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:33:40Z (GMT). No. of bitstreams: 1
ntu-107-R05443002-1.pdf: 4492384 bytes, checksum: fdb022304a178044fd3cbf4d12eee378 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Abbreviation 1
Introduction 3
Section I Lung cancer and the EGFR mutation 4
Section II EGFR-TKI therapy in NSCLC 11
Section III EGFR-TKI resistance in NSCLC 16
Section IV The serine/threonine kinase AKT3 20
Materials and Methods 29
Study motivation 39
Results 40
Discussion 62
Reference 67
dc.language.isoen
dc.subject抗藥性zh_TW
dc.subject肺癌zh_TW
dc.subjectGefitinibzh_TW
dc.subjectAZD9291zh_TW
dc.subjectAKT3zh_TW
dc.subjectacquired resistanceen
dc.subjectLung canceren
dc.subjectAKT3en
dc.subjectAZD9291en
dc.subjectGefitiniben
dc.titleAKT3在非小細胞肺癌EGFR-TKI抗藥性之研究zh_TW
dc.titleRole of AKT3 in EGFR-TKI Resistance of
Non-Small Cell Lung Cancer
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明賢,施金元
dc.subject.keyword肺癌,Gefitinib,AZD9291,抗藥性,AKT3,zh_TW
dc.subject.keywordLung cancer,Gefitinib,AZD9291,acquired resistance,AKT3,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201802541
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved