Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorCheng-Yin Huangen
dc.contributor.author黃誠印zh_TW
dc.date.accessioned2021-06-17T04:33:08Z-
dc.date.available2020-08-17
dc.date.copyright2018-08-17
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citation[1] S. Zaehringer, M. Menacher, P. Kirchner, and N. Schwesinger, 'Normally closed piezoelectric micro valve,' in 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), 2010, pp. 105-109.
[2] B. D. Iverson and S. V. Garimella, 'Recent advances in microscale pumping technologies: a review and evaluation,' Microfluidics and Nanofluidics, vol. 5, no. 2, pp. 145-174, 2008/08/01 2008.
[3] J. Melin and S. R Quake, Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation. 2007, pp. 213-31.
[4] M. N. D, 'Hydraulic Control System 1st edn (Hoboken, NJ: Wiley),' pp. pp 179–87, 2005.
[5] T. Dolżan et al., 'Design of transdermal drug delivery system with PZT actuated micropump,' in 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014, pp. 96-99.
[6] b. jaFFE, 'Piezoelectric ceramics,' vol. 3: Elsevier, 2012.
[7] G. P. Jayaraman and S. V. Lunzman, 'An observer design for a poppet type pressure reducing valve,' in 2011 IEEE International Conference on Control Applications (CCA), 2011, pp. 76-81.
[8] J. Jeon, C. Han, J. Ung Chung, and S. Choi, Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature. 2015.
[9] White paper Piezo technology in pneumatic valves. Available: https://www.festo.com/cms/en-us_us/9752.htm
[10] H. Guo, K. Wang, H. Cui, A. Xu, and J. Jiang, 'A Novel Method of Fault Detection for Solenoid Valves Based on Vibration Signal Measurement,' in 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016, pp. 870-873.
[11] 馮榮豐主編, '“奈微米工程—精密製程與量測技術,”' 2002.
[12] J. Jang and S. S. Lee, 'Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,' Sensors and Actuators A: Physical, vol. 80, no. 1, pp. 84-89, 2000/03/01/ 2000.
[13] H.-H. Wang, 'Development of a Light-activated Optopiezoelectric Thin-Film and its Applications on Microfluidics System,' National Taiwan University Master Thesis, 2015.
[14] W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, 'Thin-film shape-memory alloy actuated micropumps,' Journal of Microelectromechanical Systems, vol. 7, no. 2, pp. 245-251, 1998.
[15] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, 'Integrated micro-liquid dosing system,' in [1993] Proceedings IEEE Micro Electro Mechanical Systems, 1993, pp. 254-259.
[16] O. S. Jensen and P. Gravesen, 'Flow characteristics of a micromachined diaphragm valve designed for liquid flows above 1 ml min -1,' Journal of Micromechanics and Microengineering, vol. 3, no. 4, p. 236, 1993.
[17] P. Woias, R. Linnemann, M. Richter, A. Leistner, and B. Hillerich, 'A Silicon Micropump with a High Bubble Tolerance and Self-Priming Capability,' in Micro Total Analysis Systems ’98, Dordrecht, 1998, pp. 383-386: Springer Netherlands.
[18] 吳朗, '電子陶瓷 :壓電陶瓷 全欣,' 1994.
[19] M. Shen and M. A. M. Gijs, 'High-performance magnetic active-valve micropump,' in TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 1234-1237.
[20] G. Londe, A. Wesser, H. J. Cho, L. Zhai, A. Chunder, and S. Subbarao, 'A Passive Microfluidic Valve using Superhydrophobic/Hydrophilic Nanostructures for Lab-on-A-Chip (LOC) Systems,' in TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference, 2007, pp. 1801-1804.
[21] T. Q Truong and N.-T. Nguyen, Simulation and optimization of Tesla valves. 2003, pp. 178-181.
[22] M. T. C. Yang, J. Lo, and U. Lei,, ''Numerical study of a valve-less micro-pump based on asymmetric obstacles,' 2005.
[23] M. Schluter, U. Kampmeyer, I. Tahhan, and H. J. Lilienhof, 'A modular structured, planar micro pump with no moving part (NMP) valve for fluid handling in microanalysis systems,' in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578), 2002, pp. 500-503.
[24] T. Kajima, 'Development of a high-speed solenoid valve-investigation of the energizing circuits,' IEEE Transactions on Industrial Electronics, vol. 40, no. 4, pp. 428-435, 1993.
[25] M. N. Maslan, M. Mailah, and I. Z. M. Darus, 'Identification and Control of a Piezoelectric Bender Actuator,' in 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, pp. 461-466.
[26] K. T. Chang, 'Design and Implementation of a Piezoelectric Clutch Mechanism Using Piezoelectric Buzzers,' in 2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, pp. 2178-2183.
[27] X. f. Chen, J. j. Xu, Y. Wang, and W. q. Huang, 'Working mechanism of a novel linear piezo-stack motor,' in Proceedings of the 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, 2010, pp. 447-450.
[28] S. Z. Mansour and R. Seethaler, 'Design of a test setup to independently vary displacement and force of piezoelectric stack actuators,' in 2017 IEEE SENSORS, 2017, pp. 1-3.
[29] M. S. Rana, H. R. Pota, and I. R. Petersen, 'Improvement in the Imaging Performance of Atomic Force Microscopy: A Survey,' IEEE Transactions on Automation Science and Engineering, vol. 14, no. 2, pp. 1265-1285, 2017.
[30] 'Development of 3D printed fibrillar collagen scaffold for tissue engineering,' Biomedical Microdevices, vol. 20, no. 2, 2018.
[31] J. M. Breguet, W. Driesen, F. Kaegi, and T. Cimprich, 'Applications of piezo-actuated micro-robots in micro-biology and material science,' 2007, Available: https://infoscience.epfl.ch/record/118234/files/Applications of piezo-actuated micro-robots in micro-biology and material science.pdf
[32] B.-S. Yoo, S.-H. Choi, C. Lee, and J. Jang, 'Light-induced metastable state in doping-modulated amorphous silicon superlattices,' Superlattices and Microstructures, vol. 4, no. 2, pp. 133-137, 1988/01/01/ 1988.
[33] E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, 'A comparison between several vibration-powered piezoelectric generators for standalone systems,' Sensors and Actuators A: Physical, vol. 126, no. 2, pp. 405-416, 2006/02/14/ 2006.
[34] K. S. V. Dyke, 'The Piezo-Electric Resonator and Its Equivalent Network,' Proceedings of the Institute of Radio Engineers, vol. 16, no. 6, pp. 742-764, 1928.
[35] E. A. Gerber and L. F. Koerner, 'Methods of Measurement of the Parameters of Piezoelectric Vibrators,' Proceedings of the IRE, vol. 46, no. 10, pp. 1731-1737, 1958.
[36] B. Bayik, A. Aghakhani, I. Basdogan, and A. Erturk, 'Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC–DC conversion,' Smart Materials and Structures, vol. 25, no. 5, p. 055015, 2016.
[37] J. Curie and P. Curie, 'Development by pressure of polar electricity in hemihedral crystals with inclined faces,' Bull. soc. min. de France, vol. 3, p. 90, 1880.
[38] W. G. Hankel, '“Piezoelectric”Applied Sciences,' p. 457, 1881.
[39] G. Lippmann, 'On the principle of the conservation of electricity,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 11, no. 70, pp. 474-475, 1881/06/01 1881.
[40] T. L. Rhyne, 'An improved interpretation of Mason's model for piezoelectric plate transducers,' IEEE Transactions on Sonics and Ultrasonics, vol. 25, no. 2, pp. 98-103, 1978.
[41] C. Lee, ''Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships,'Part I: Governing equations and reciprocal relationships,'' The Journal of the Acoustical Society of America, vol. 87, pp. 1144-1158,, 1990.
[42] W. P. Mason, 'Electromechanical Transducers and Wave Filters (2nd edn.)Van Nostrand Reinhold,' 1948.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70630-
dc.description.abstract本論文開發一以雙層壓電致動器為核心的氣體閥門,目的是利用壓電材料的逆壓電效應的變形,去控制前端氣體泵浦的流量及氣壓,達到氣閥的功能。本研究將雙層壓電薄板設計為一維系統,在雙簡支端的邊界條件下,透過結構本身抗彎的能力擋住上游的氣體壓力,並將兩片鋯鈦酸鉛壓電薄板以極化方向相對的方式黏貼在不鏽鋼薄板的兩端,當給予一電場於此三層結構上下兩端的電極時,因為不同的極化方向,故上下兩片壓電材料會分別產生拉伸以及壓縮的機械形變,產生彎曲變形將氣體放出,同時利用電訊號輸入至壓電材料時所會產生來回的往復運動,達到可調變流阻及控制壓力的目的。
為驗證所設計出的氣體閥門的功能,本研究針對不同長度的雙層壓電制動器(55mm、50mm、45mm),在不同的驅動電壓及驅動頻率下進行分析。經過實驗證實,長度55mm及電極面積為100%的雙層PZT,在中間夾一層厚度0.1mm的不鏽鋼板的設計下,以1Hz方波320Vpp的驅動電壓下,能夠調變系統達10倍的壓力差。最後,本研究結合TiOPc光敏材料製作出的光壓電氣體閥門,引入光控功能,達到在照光及未照光的情狀下能夠達到63%的調變能力,完成光控流量的功能。
zh_TW
dc.description.abstractIn this research, we present a pneumatic valve based on bimorph piezoelectric material. The converse effect of piezoelectric materials is used to precisely control the flow rate and pressure in the output port. The bimorph structure was designed to be a one-dimensional plate to reduce the overall size of the piezoelectric actuator. The piezoelectric laminate was slightly compressed to create a pre-stressed condition against the input pressure. The pressure released as the electrical signal is applied to PZT and activated bending deformation. The performances of this system were studied and evaluated, including frequency response, pressure drop, and flow rate.
The piezoelectric actuator was fabricated by attaching two 5 mm wide, 45 mm, 50 mm, or 55 mm long and 0.2 mm thick PZT laminate. With 0.1mm thick stainless steel plate in the middle to form a stainless steel bimorph. With different percentage of the surface electrode (50%, 75%, 100%) design. Two PZT layers are able to create different deformation. The level of the movement was studied under a different driving voltage and operating frequency. Experimental results showed that in the design of 55 mm length 100% electrode and a 0.1 mm shim in the middle can create almost ten times pressure difference with 1Hz square wave 320Vpp driving condition. The optopiezoelectric composite was also introduced to develop an optical controllable valve, and a 63% controllability was achieved.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:33:08Z (GMT). No. of bitstreams: 1
ntu-107-R05525040-1.pdf: 9793105 bytes, checksum: fe481d0f8fa850f19ed85fe9589d6fd7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 研究背景跟動機 1
1.2 文獻回顧 2
1.2.1泵浦種類介紹 2
1.2.2 閥門種類介紹 6
1.2.3壓電閥門之介紹 8
1.3 論文架構 12
第2章 薄板式雙壓電氣閥之結構設計 13
2.1 設計理念 13
2.1.1 材料選擇 15
2.1.2 壓電致動器設計 15
2.1.3 光壓電氣閥設計理念 17
2.1.4 光壓電薄板之等效電路 18
2.2 壓電氣體閥門製程介紹 18
2.2.1 壓電片切割 19
2.2.2 壓電片蝕刻 19
2.2.3 邊界條件模組製作 21
2.3實驗儀器與設備架設 23
2.3.1 電學阻抗測量原理 23
2.3.2等效電路分析 26
2.3.3位移量測 28
2.3.4空間動態流率量測 28
2.3.5空間動態壓力量測 29
第3章 壓電材料特性介紹與基礎理論 31
3.1 壓電材料介紹 31
3.1.1 壓電起源與歷史 31
3.1.2 壓電效應 31
3.1.3 壓電種類 32
3.2 壓電理論推導 33
3.2.1 壓電材料組成方程式 33
3.2.2 機電耦合係數 37
3.2.3 有效表面電極(Effective surface electrode) 43
3.2.4 雙簡支端(simply supported- simply supported) 47
3.2.5 共振頻計算 55
第4章 有限元素模擬分析 57
4.1 有限元素模型之建立與說明 57
4.2 模型建立與參數設定 57
第5章 實驗結果與討論 60
5.1無不鏽鋼板結構設計 60
5.1.1 阻抗分析儀測量 60
5.1.2 模型尺寸對特徵頻率的影響 62
5.1.3 理論計算共振頻率 65
5.1.4 共振頻率結果分析 66
5.2 壓電片振動位移分析 68
5.2.1位移分析 68
5.2.2 有限元素分析 72
5.3流率及壓力分析 76
5.4不鏽鋼板夾層結構設計 78
5.4.1 撓區剛度設計 78
5.4.2 抗彎位移測試(Blocking force) 79
5.4.3 同步性能展現 81
5.4.4 最大壓力測試 86
第6章 光壓電氣體閥門設計 88
6.1光敏材料介紹 88
6.2 阻抗相位頻率響應分析 89
第7章 結論與未來展望 95
7.1結論 95
7.2未來展望 96
Reference 97
dc.language.isozh-TW
dc.subject壓電閥門zh_TW
dc.subject氣體閥門zh_TW
dc.subject雙層壓電制動器zh_TW
dc.subjectFrequency responseen
dc.subjectBimorph piezoelectric materialen
dc.subjectconverse piezoelectric effecten
dc.subjectPressure dropen
dc.subjectFlow rateen
dc.subjectpneumatic valveen
dc.title薄板式雙光壓電氣閥之開發zh_TW
dc.titleDevelopment of optopiezoelectric pneumatic valve based on bimorph actuatoren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor許聿翔
dc.contributor.oralexamcommittee吳文中,謝志文,柯文清
dc.subject.keyword壓電閥門,雙層壓電制動器,氣體閥門,zh_TW
dc.subject.keywordBimorph piezoelectric material,converse piezoelectric effect,Frequency response,Pressure drop,Flow rate,pneumatic valve,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201802861
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved