Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇(Hung-Yu Wei)
dc.contributor.authorFu-Yun Tsuoen
dc.contributor.author左傅勻zh_TW
dc.date.accessioned2021-05-17T10:18:08Z-
dc.date.available2014-01-16
dc.date.available2021-05-17T10:18:08Z-
dc.date.copyright2012-01-16
dc.date.issued2011
dc.date.submitted2011-11-15
dc.identifier.citation[1] W.K.G. Seah, Z.A. Eu, and H.P. Tan. Wireless sensor networks powered by ambient energy harvesting (wsn-heap)-survey and challenges. In 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (VITAE), 2009.
[2] NA Pantazis and DD Vergados. A survey on power control issues in wireless sensor networks. IEEE Communications Surveys & Tutorials, 2007.
[3] A. Kansal, D. Potter, and M.B. Srivastava. Performance aware tasking for environmentally powered sensor networks. In ACM SIGMETRICS Performance Evaluation Review, 2004.
[4] A. Kansal, J. Hsu, S. Zahedi, and M.B. Srivastava. Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 2007.
[5] A. Seyedi and B. Sikdar. Modeling and analysis of energy harvesting nodes in wireless sensor networks. In 46th Annual Allerton Conference on Communication, Control, and Computing, 2008.
[6] D. Niyato, E. Hossain, and A. Fallahi. Sleep and wakeup strategies in solarpowered wireless sensor/mesh networks: Performance analysis and optimization. IEEE Transactions on Mobile Computing, 2007.
[7] J. Lei, R. Yates, and L. Greenstein. A generic model for optimizing singlehop transmission policy of replenishable sensors. IEEE Transactions on Wireless Communications, 2009.
[8] A.E. Susu, A. Acquaviva, D. Atienza, and G. De Micheli. Stochastic modeling and analysis for environmentally powered wireless sensor nodes. In 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks and Workshops, 2008.
[9] C.K. Ho, P.D. Khoa, and P.C. Ming. Markovian models for harvested energy in wireless communications. In Proceedings of the International Conference on Communications Systems (ICCS), Singapore, 2010.
[10] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.L. Zhang. Leakage-aware energy synchronization for wireless sensor networks. In Proceedings of the 7th international conference on Mobile systems, applications, and services, 2009.
[11] K. Akkarajitsakul, E. Hossain, D. Niyato, and D. Kim. Game theoretic approaches for multiple access in wireless networks: A survey. IEEE Communications Surveys Tutorials, 2011.
[12] B. Yang, G. Feng, and X. Guan. Noncooperative random access game via pricing in ad hoc networks. In 46th IEEE Conference on Decision and Control, 2007.
[13] T. Cui, L. Chen, and S. Low. A game-theoretic framework for medium access control. IEEE Journal on Selected Areas in Communications, 2008.
[14] L. Chen, S.H. Low, and J.C. Doyle. Contention control: A game-theoretic approach. In 46th IEEE Conference on Decision and Control, 2007.
[15] S. Chowdhury, S. Dutta, K. Mitra, D.K. Sanyal, M. Chattopadhyay, and S. Chattopadhyay. Game-theoretic modeling and optimization of contention-prone medium access phase in ieee 802.16/wimax networks. In Third International Conference on Broadband Communications, Information Technology & Biomedical Applications, 2008.
[16] J. Park and M. van der Schaar. Incentive provision using intervention. In IEEE INFOCOM, 2011.
[17] J. Park andM. Van Der Schaar. Stackelberg contention games inmultiuser networks. EURASIP Journal on Advances in Signal Processing, 2009.
[18] ETSI TS 102 689 v1.1.1 (2010-08): Machine-to-machine communications; m2m service requirements. August 2010.
[19] D. Monderer and L.S. Shapley. Potential games. Games and economic behavior, 1996.
[20] F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research society, 1998.
[21] D. Fudenberg and J. Tirole. Game theory., 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7062-
dc.description.abstract傳統無線感測網路以電池作為電源供應,然而一旦電池用盡,網路將陷入無法使用的困境,直至更新電池為止。但在某些無線感測網路應用當中,更換電池幾乎不可行,譬如建築監測感測系統。為了解決這問題,人們轉向使用可從環境汲取能源之能量收集無線感測網路。在這論文裡,我們建立了能量收集無線感測網路之隨機接取控制理論模型,探討眾多無線感測裝置爭取有限傳輸資源產生之問題。考慮無線感測裝置會自私地最大化自己的效用,所有裝置將會不顧系統整體效能選擇傳輸,使得系統陷入最糟情況。我們提出兩種激勵機制:收費機制和干擾機制,用以防止系統陷入最糟狀況。這兩種激勵機制可以誘使無線感測裝置選擇對系統而言最佳的策略,使系統達到社會最適(Social Optimal)、或是比例公平(Proportional Fair)的分配。在論文最後,我們深入探討無線感測裝置可選擇留存能源之延伸模型。我們發現,無線感測裝置會根據每段時間的能量收集機率,決定是否將能源留存至未來。在系統達成平衡之後,無線感測裝置會在能量收集機率較高的期間,選擇較高的傳輸機率。zh_TW
dc.description.abstractTraditional wireless sensor networks (WSN) are powered by batteries. Once the batteries run out, the devices become useless until they are replenished. However, for some kinds of applications, such as building structure monitoring, it is nearly impossible to replenish the batteries of devices. To overcome this problem, people turn to the energy-harvesting(EH) WSNs which can harvest energy from the environment. In this work, we construct theoretic models where devices are competing for limited transmission resource. Since the devices are selfish, they all choose to transmit regardless of others’ strategy, which leads to the severe network congestion. We propose two incentive mechanisms, a pricing scheme and an intervention scheme, that prohibit the system outcome from the worst case. The incentive scheme can induce the desired optimal outcomes whichmaximize the social welfare or the proportional fairness. In the last part, we also build an extension model in which the energy can be stored for the future. We show that it is more likely that the device chooses to save some energy for the period when the energy harvesting probability
is comparatively low. On the other hand, the devices will choose a higher transmission probability at the period when the energy harvesting probability is comparatively high.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T10:18:08Z (GMT). No. of bitstreams: 1
ntu-100-R98921039-1.pdf: 1713770 bytes, checksum: e10db40b5e2100d1b1f56e043eea7b87 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsMaster Thesis Certification by Oral Defense Committee i
Chinese Abstract ii
Abstract iii
Chapter 1 Introduction 1
Chapter 2 Related Works 3
2.1 Energy Issue in WSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Medium Access Control Game . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 3 One-Shot Models 7
3.1 The Random Access Control (RAC) Model . . . . . . . . . . . . . . . . 7
3.2 The RAC Game: Definition and Solution Concept . . . . . . . . . . . . . 9
3.3 Nash Equilibrium: A Potential Game Approach . . . . . . . . . . . . . . 10
3.4 The Energy-Harvesting RAC Game . . . . . . . . . . . . . . . . . . . . 12
3.5 Nash Equilibrium in Energy Harvesting RAC Game . . . . . . . . . . . . 13
Chapter 4 Incentive Mechanisms 16
4.1 Pricing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Intervention Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter 5 The Desired Outcome 24
5.1 The Proportionally Fair Outcome . . . . . . . . . . . . . . . . . . . . . . 24
5.2 The Social Optimal Outcome . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Adopting the Incentive Schemes to Achieve the Optimal Outcomes . . . . 32
Chapter 6 Extension: Multi-Period Model 36
6.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 The Probability of Harvesting Energy . . . . . . . . . . . . . . . . . . . 37
6.3 Nash equilibrium: Intersection of Best Response . . . . . . . . . . . . . 39
6.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Chapter 7 Numerical Results 44
7.1 System Performance With Different Parameters . . . . . . . . . . . . . . 44
7.2 Simulation of The 2-Period 2-Device EH-RAC Game . . . . . . . . . . . 46
7.3 Extended Simulations of Multi-period Multi-device EH-RAC Game . . . 48
Chapter 8 Conclusion 53
Bibliography 55
dc.language.isoen
dc.subject賽局理論zh_TW
dc.subject激勵機制zh_TW
dc.subject比例公平zh_TW
dc.subject納許均衡zh_TW
dc.subject社會最適zh_TW
dc.subject能量收集無線感測網路zh_TW
dc.subjectproportional fairnessen
dc.subjectenergy-harvesting WSNsen
dc.subjectNash equilibriumen
dc.subjectgame theoryen
dc.subjectsocial optimalen
dc.subjectincentive mechanismen
dc.title以賽局理論分析能量收集無線感測網路之隨機接取控制zh_TW
dc.titleRandom Access Control in Energy-Harvesting Wireless Sensor Networks: A Game-Theoretical Approachen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee逄愛君(Ai-Chun Pang),謝宏昀(Hung-Yun Hsieh),于天立(Tian-Li Yu),陳和麟(Ho-Lin Chen)
dc.subject.keyword賽局理論,納許均衡,能量收集無線感測網路,激勵機制,社會最適,比例公平,zh_TW
dc.subject.keywordgame theory,Nash equilibrium,energy-harvesting WSNs,incentive mechanism,social optimal,proportional fairness,en
dc.relation.page57
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-11-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved