請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70616完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武(Shiu-Wu Chau) | |
| dc.contributor.author | Po-Cheng Chen | en |
| dc.contributor.author | 陳柏丞 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:42Z | - |
| dc.date.available | 2025-08-27 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-27 | |
| dc.identifier.citation | [1] G. B. Jeffery, 'The motion of ellipsoidal particles immersed in a viscous fluid,' Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 102, no. 715, pp. 161-179, 1922. [2] F. Folgar and C. L. Tucker III, 'Orientation behavior of fibers in concentrated suspensions,' Journal of Reinforced Plastics and Composites, vol. 3, no. 2, pp. 98-119, 1984. [3] S. G. Advani and C. L. Tucker III, 'The use of tensors to describe and predict fiber orientation in short fiber composites,' Journal of Rheology, vol. 31, no. 8, pp. 751-784, 1987. [4] Y. Shimizu, S. Arai, T. Itoyama, and H. Kawamoto, 'Experimental analysis of the kneading disk region in a co-rotating twin screw extruder: Part 2. glass-fiber degradation during compounding,' Advances in Polymer Technology, vol. 16, no. 1, pp. 25-32, 1997. [5] U. Yilmazer and M. Cansever, 'Effects of processing conditions on the fiber length distribution and mechanical properties of glass fiber reinforced nylon-6,' Polymer Composites, vol. 23, no. 1, pp. 61-71, 2002. [6] F. Inceoglu, J. Ville, M Ghamri, J. L. Pradel, A. Durin, R. Valette, and B. Vergnes, 'Correlation between processing conditions and fiber breakage during compounding of glass fiber-reinforced polyamide,' Polymer Composites, vol. 32, no. 11, pp. 1842-1850, 2011. [7] K. Ramani, D. Bank, and N. Kraemer, 'Effect of screw design on fiber damage in extrusion compounding and composite properties,' Polymer Composites, vol. 16, no. 3, pp. 258-266, 1995. [8] J. Grillo, P. Andersen, and E. Papazoglou, 'Experimental studies for optimizing screw and die design when compounding fiberglass strand on the co-rotating twin screw extruder,' Journal of Reinforced Plastics and Composites, vol. 12, no. 3, pp. 311-326, 1993. [9] M. M. Kuroda and C. E. Scott, 'Blade geometry effects on initial dispersion of chopped glass fibers,' Polymer Composites, vol. 23, no. 5, pp. 828-838, 2002. [10] S. H. Bumm, J. L. White, and A. I. Isayev, 'Glass fiber breakup in corotating twin screw extruder: Simulation and experiment,' Polymer Composites, vol. 33, no. 12, pp. 2147-2158, 2012. [11] K. Hirata, H. Ishida, M. Hiragohri, Y. Nakayama, and T. Kajiwara, 'Effectiveness of a backward mixing screw element for glass fiber dispersion in a twin‐screw extruder,' Polymer Engineering Science, vol. 54, no. 9, pp. 2005-2012, 2014. [12] K. Hirata, H. Ishida, M. Hiragori, Y. Nakayama, and T. Kajiwara, 'Numerical study on mixing performance of glass fiber dispersion in a twin-screw extruder with backward-mixing elements,' American Institute of Physics Conference Proceedings, 2015. [13] T. Kajiwara, Y. Nagashima, Y. Nakano, and K. Funatsu, 'Numerical study of twin-screw extruders by three-dimensional flow analysis—development of analysis technique and evaluation of mixing performance for full flight screws,' Polymer Engineering Science, vol. 36, no. 16, pp. 2142-2152, 1996. [14] A. Lawal and D. M. Kalyon, 'Mechanisms of mixing in single and co-rotating twin screw extruders,' Polymer Engineering Science, vol. 35, no. 17, pp. 1325-1338, 1995. [15] D. M. Kalyon, A. Lawal, R. Yazici, P. Yaras, and S. Railkar, 'Mathematical modeling and experimental studies of twin-screw extrusion of filled polymers,' Polymer Engineering Science, vol. 39, no. 6, pp. 1139-1151, 1999. [16] H. H. Yang and I. Manas-Zloczower, 'Flow field analysis of the kneading disc region in a co-rotating twin screw extruder,' Polymer Engineering Science, vol. 32, no. 19, pp. 1411-1417, 1992. [17] H. Cheng and I. Manas-Zloczower, 'Study of mixing efficiency in kneading discs of co-rotating twin-screw extruders,' Polymer Engineering Science, vol. 37, no. 6, pp. 1082-1090, 1997. [18] H. Cheng and I. Manas-Zloczower, 'Distributive mixing in conveying elements of a ZSK-53 co-rotating twin screw extruder,' Polymer Engineering Science, vol. 38, no. 6, pp. 926-935, 1998. [19] M. Yoshinaga, S. Katsuki, M. Miyazaki, L. Liu, S.-I. Kihara, and K. Funatsu, 'Mixing mechanism of three-tip kneading block in twin screw extruders,' Polymer Engineering Science, vol. 40, no. 1, pp. 168-178, 2000. [20] V. L. Bravo, A. N. Hrymak, and J. D. Wright, 'Numerical simulation of pressure and velocity profiles in kneading elements of a co-rotating twin screw extruder,' Polymer Engineering Science, vol. 40, no. 2, pp. 525-541, 2000. [21] V. L. Bravo, A. N. Hrymak, and J. D. Wright, 'Study of particle trajectories, residence times and flow behavior in kneading discs of intermeshing co-rotating twin-screw extruders,' Polymer Engineering Science, vol. 44, no. 4, pp. 779-793, 2004. [22] Y. Nakayama, N. Nishihira, T. Kajiwara, H. Tomiyama, T. Takeuchi, and K. Kimura, 'Effects of pitched tips of novel kneading disks on melt mixing in twin-screw extrusion,' Nihon Reoroji Gakkaishi, vol. 44, no. 5, pp. 281-288, 2017. [23] Y. Nakayama, H. Takemitsu, T. Kajiwara, K. Kimura, T. Takeuchi, and H. Tomiyama, 'Improving mixing characteristics with a pitched tip in kneading elements in twin-screw extrusion,' American Institute of Chemical Engineers Journal, vol. 64, no. 4, pp. 1424-1434, 2018. [24] C. L. Tan, Mixing prediction of co-rotating twin screw extruder via three-dimensional flow modeling, Master thesis, Deptartment of Engineering Science and Ocean Engineering, National Taiwan University, 2018. [25] D. B. Todd, 'Residence time distribution in twin-screw extruders,' Polymer Engineering Science, vol. 15, no. 6, pp. 437-443, 1975. [26] S. V. Kao and G. R. Allison, 'Residence time distribution in a twin screw extruder,' Polymer Engineering Science, vol. 24, no. 9, pp. 645-651, 1984. [27] J. Gao, G. C. Walsh, D. Bigio, R. M. Briber, and M. D. Wetzel, 'Residence‐time distribution model for twin‐screw extruders,' American Institute of Chemical Engineers Journal, vol. 45, no. 12, pp. 2541-2549, 1999. [28] A. Poulesquen and B. Vergnes, 'A study of residence time distribution in co‐rotating twin‐screw extruders. Part I: Theoretical modeling,' Polymer Engineering Science, vol. 43, no. 12, pp. 1841-1848, 2003. [29] H. H. Yang and I. Manas‐Zloczower, 'Flow field analysis of the kneading disc region in a co‐rotating twin screw extruder,' Polymer Engineering Science, vol. 32, no. 19, pp. 1411-1417, 1992. [30] Y. Nakayama, E. Takeda, T. Shigeishi, H. Tomiyama, and T. Kajiwara, 'Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-screw extruder,' Chemical Engineering Science, vol. 66, no. 1, pp. 103-110, 2011. [31] D. H. Chung and T. H. Kwon, 'Improved model of orthotropic closure approximation for flow induced fiber orientation,' Polymer Composites, vol. 22, no. 5, pp. 636-649, 2001. [32] S. C. Chapra and R. P. Canale, Numerical methods for engineers. Boston: McGraw-Hill Higher Education, 2010. [33] D. B. Spalding, Numerical prediction of flow, heat transfer, turbulence and combustion. Amsterdam: Elsevier, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70616 | - |
| dc.description.abstract | 本研究以數值方式模擬六組雙螺桿(Type1、Type2、Type3、Type4、Type5、Type6)在轉速300 RPM、流量10kg/hr以及工作溫度200℃條件下的纖維混練流場。首先根據雙螺桿組態生成旋轉周期內各角度的流場網格,並在等溫流場與不可壓縮流的假設下,求解三維暫態連續方程式、動量方程式,以獲得雙螺桿流場特性。接著根據流場的模擬結果,以四階Runge-Kutta方法預測虛擬粒子在套筒內部的移動路徑,並計算出暫留時間與混合效率,分析雙螺桿混練的分散與分佈特性。最後使用纖維排向張量方程組,預測纖維於流場流動的排向行為,並分析纖維於不同纖維交互作用係數下對於纖維排向之影響。本研究以上述方法模擬六組螺桿組態之混練製程。計算結果顯示,Type2、Type5、Type6有較高的平均暫留時間,具有較好的分配性; Type5與Type6有較高的平均剪應力,具有較佳的分散性; Type2、Type3、Type6有較高的平均剪切率型態因子,具有較好的分配性; Type1、Type5、Type6有較高的平均Manas-Zloczower混合因子,表示流場更接近於拉伸流動。綜合上述結果,Type6螺桿組態為最佳之組態設計。此外,纖維交互作用係數越小對於纖維於螺桿出口的排向率越佳,纖維的排向角亦更趨近垂直於套筒表面。計算結果顯示當纖維交互作用係數為0.001時,6組螺桿的排向率皆接近95%。 | zh_TW |
| dc.description.abstract | In this thesis, a numerical approach is employed to study the fiber-compounding process of a twin-screw extruder under the working conditions of 300 RPM, 10 kg/hr, and 200℃. Based on the screw element configuration, the numerical grid for each specified angle within a rotational period is generated. An unsteady three-dimensional model is applied to solve the continuity and momentum equations under the assumption of isothermal and incompressible flow. The particle movement in the barrel is then predicted via a fourth-order Runge-Kutta method according to the calculated flow field and the mixing efficiency is forecasted to evaluate the dispersion and distribution characteristics. Finally, the behavior of fiber orientation in the compounding process is predicted using the equation of orientation tensor, while the influence of the fiber interaction coefficient on fiber orientation is also investigated. Six different twin-screw configurations (Type1-6) are employed in modeling the extrusion process for fiber compounding. Numerical predictions indicate that screw configuration Types 2, 5, and 6 have a high average residence time and exhibit better distributive mixing. The high average shear stress of Types 5 and 6 indicates better dispersion in mixing. Types 2, 3, and 6 with a high mean strain-rate-type identifier deliver better distributive mixing, while the Manas-Zloczower mixing index of Types 1, 5, and 6 indicates improved mixing behavior. Based on these results, twin-screw configuration Type6 is identified as the optimal design. In addition, the smaller the fiber interaction coefficient, the higher the degree of fiber orientation in the outlet plane, accompanied by the fiber orientation angle more perpendicular to the barrel surface. The calculation results show that the degree of fiber orientation reaches approximately 95% when the fiber-interaction coefficient is 0.001. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:42Z (GMT). No. of bitstreams: 1 U0001-2708202014295800.pdf: 13949085 bytes, checksum: 822ab26cb448d38e2eed8508c9ab2f32 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Abstract i 摘要 ii Nomenclature v List of Figures viii List of Tables xiii Chapter 1 Introduction 1 1-1 Overview 1 1-2 Literature Review 3 Chapter 2 Geometry 7 2-1 Geometrical Parameters 7 Chapter 3 Mathematical Model 13 3-1 Numerical Framework 13 3-2 Flow Simulation 14 3-2-1 Assumptions 14 3-2-2 Governing Equations 15 3-2-3 Numerical Method 16 3-2-4 Material Properties 17 3-2-5 Meshing 19 3-2-6 Boundary Conditions 26 3-3 Particle Tracing 28 3-3-1 Tracer Equations 28 3-3-2 Boundary Conditions 29 3-3-3 Mixing Indices 31 3-4 Fiber Orientation 33 3-4-1 Assumptions 33 3-4-2 Fiber Orientation Equation 34 3-4-3 Numerical Approach 37 3-4-4 Fiber Orientation Verification 38 Chapter 4 Numerical Results 40 4-1 Case Description 40 4-2 Flow Characteristics 41 4-3 Average Physical Quantities along the Flow Direction 61 4-4 Volume Fraction Distribution of the Physical Quantities 67 4-5 Probability Distribution 77 4-6 Fiber Orientation in the Flow Field 86 Chapter 5 Conclusions 102 References 104 | |
| dc.language.iso | en | |
| dc.subject | 混合效率 | zh_TW |
| dc.subject | 分散性 | zh_TW |
| dc.subject | 分配性 | zh_TW |
| dc.subject | 纖維排向 | zh_TW |
| dc.subject | 纖維交互作用係數 | zh_TW |
| dc.subject | Fiber Interaction Coefficient | en |
| dc.subject | Dispersion | en |
| dc.subject | Mixing Efficiency | en |
| dc.subject | Distribution | en |
| dc.subject | Fiber Orientation | en |
| dc.title | 同向雙螺桿擠出纖維排向預測 | zh_TW |
| dc.title | Fiber Orientation Prediction in Co-Rotating Twin Screw Extrusion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文章(Wen-Chang Chen),陳夏宗(Shia-Chung Chen),芮祥鵬(Syang-Peng Rwei),羅弘岳(Hong-Yueh Lo),吳晉安(Jin-An Wu) | |
| dc.subject.keyword | 混合效率,分散性,分配性,纖維排向,纖維交互作用係數, | zh_TW |
| dc.subject.keyword | Mixing Efficiency,Dispersion,Distribution,Fiber Orientation,Fiber Interaction Coefficient, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202004180 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2708202014295800.pdf 未授權公開取用 | 13.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
