請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁詩同 | |
| dc.contributor.author | Cheng-Ting Tung | en |
| dc.contributor.author | 童政庭 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:23Z | - |
| dc.date.available | 2020-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | Anantharam, A., Bittner, M.A., Aikman, R.L., Stuenkel, E.L., Schmid, S.L., Axelrod, D., and Holz, R.W. (2011). A new role for the dynamin GTPase in the regulation of fusion pore expansion. Mol Biol Cell 22, 1907-1918.
Bauer, R., Plieschnig, J.A., Finkes, T., Riegler, B., Hermann, M., and Schneider, W.J. (2013). The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. Journal of Biological Chemistry 288, 1088-1098. Bellairs, R. (1963). Differentiation of yolk sac of chick studied by electron microscopy. J Embryol Exp Morph 11, 201-225. Burley, R.W., Evans, A.J., and Pearson, J.A. (1993). Molecular aspects of the synthesis and deposition of hens' egg yolk with special reference to low density lipoprotein. Poult Sci 72, 850-855. Cocucci, E., Gaudin, R., and Kirchhausen, T. (2014). Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol Biol Cell 25, 3595-3609. Ding, S.T., and Lilburn, M.S. (2000). The developmental expression of acyl-coenzyme A:cholesterol acyltransferase in the yolk sac membrane, liver, and intestine of developing embryos and posthatch turkeys. Poult Sci 79, 1460-1464. Everett, T.R., Wilkinson, I.B., Mahendru, A.A., McEniery, C.M., Garner, S.F., Goodall, A.H., and Lees, C.C. (2014). S-Nitrosoglutathione improves haemodynamics in early-onset pre-eclampsia. Brit J Clin Pharmaco 78, 660-669. Ferguson, S.M., and De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Bio 13, 75-88. Goldstein, J.L., Anderson, R.G., and Brown, M.S. (1982). Receptor-mediated endocytosis and the cellular uptake of low density lipoprotein. Ciba Found Symp, 77-95. Goldstein, J.L., Anderson, R.G.W., and Brown, M.S. (1979). Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679-685. Grassart, A., Cheng, A.T., Hong, S.H., Zhang, F., Zenzer, N., Feng, Y.M., Briner, D.M., Davis, G.D., Malkov, D., and Drubin, D.G. (2014). Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. Journal of Cell Biology 205, 721-735. Gulati, S., Balderes, D., Kim, C., Guo, Z.M.A., Wilcox, L., Area-Gomez, E., Snider, J., Wolinski, H., Stagljar, I., Granato, J.T., et al. (2015). ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. Faseb Journal 29, 4682-4694. Harding, C., Heuser, J., and Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. Journal of Cell Biology 97, 329-339. Hermann, M., Mahon, M.G., Lindstedt, K.A., Nimpf, J., and Schneider, W.J. (2000). Lipoprotein receptors in extraembryonic tissues of the chicken. Journal of Biological Chemistry 275, 16837-16844. Jackson, J., Papadopulos, A., Meunier, F.A., McCluskey, A., Robinson, P.J., and Keating, D.J. (2015). Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatr 20, 810-819. Jaiswal, J.K., Rivera, V.M., and Simon, S.M. (2009). Exocytosis of post-golgi vesicles is regulated by components of the endocytic machinery. Cell 137, 1308-1319. Kanai, M., Soji, T., Sugawara, E., Watari, N., Oguchi, H., Matsubara, M., and Herbert, D.C. (1996). Participation of endodermal epithelial cells on the synthesis of plasma LDL and HDL in the chick yolk sac. Microsc Res Techniq 35, 340-348. Kang-Decker, N., Cao, S., Chatterjee, S., Yao, J., Egan, L.J., Semela, D., Mukhopadhyay, D., and Shah, V. (2007). Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 120, 492-501. Lambson, R.O. (1970). An electron microscopic study of the entodermal cells of the yolk sac of the chick during incubation and after hatching. Am J Anat 129, 1-19. Lazier, C.B., Wiktorowicz, M., Dimattia, G.E., Gordon, D.A., Binder, R., and Williams, D.L. (1994). Apolipoprotein (apo)B and apoII gene-expression are both estrogen-responsive in chick-embryo liver but only apoII is estrogen-responsive in kidney. Mol Cell Endocrinol 106, 187-194. Liu, J., Chang, C.C.Y., Westover, E.J., Covey, D.F., and Chang, T.Y. (2005). Investigating the allosterism of acyl-CoA : cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochemical Journal 391, 389-397. Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., and Kirchhausen, T. (2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10, 839-850. McMahon, H.T., and Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Bio 12, 517-533. Merrifield, C.J., Feldman, M.E., Wan, L., and Almers, W. (2002). Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4, 691-698. Mobbs, I.G., and McMillan, D.B. (1979). Structure of the endodermal epithelium of the chick yolk sac during early stages of development. Am J Anat 155, 287-309. Mohanakrishnan, A., Tran, T.V.M., Kumar, M., Chen, H., Posner, B.A., and Schmid, S.L. (2017). A highly-sensitive high throughput assay for dynamin's basal GTPase activity. Plos One 12, e0185639. Nakazawa, F., Alev, C., Jakt, L.M., and Sheng, G.J. (2011). Yolk sac endoderm is the major source of serum proteins and lipids and is involved in the regulation of vascular integrity in early chick development. Dev Dynam 240, 2002-2010. Noble, R.C., and Cocchi, M. (1990). Lipid-metabolism and the neonatal chicken. Prog Lipid Res 29, 107-140. Noble, R.C., and Shand, J.H. (1985). Unsaturated fatty-Acid compositional changes and desaturation during the embryonic-development of the chicken (Gallus-Domesticus). Lipids 20, 278-282. Powell, K.A., Deans, E.A., and Speake, B.K. (2004). Fatty acid esterification in the yolk sac membrane of the avian embryo. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 174, 163-168. Preta, G., Cronin, J.G., and Sheldon, I.M. (2015). Dynasore - not just a dynamin inhibitor. Cell Commun Signal 13, 24. Retzek, H., Steyrer, E., Sanders, E.J., Nimpf, J., and Schneider, W.J. (1992). Molecular cloning and functional characterization of chicken cathepsin D, a key enzyme for yolk formation. DNA Cell Biol 11, 661-672. Rogers, M.A., Liu, J., Song, B.L., Li, B.L., Chang, C.C.Y., and Chang, T.Y. (2015). Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. J Steroid Biochem 151, 102-107. Root, P., Sliskovic, I., and Mutus, B. (2004). Platelet cell-surface protein disulphide-isomerase mediated S-nitrosoglutathione consumption. Biochem J 382, 575-580. Sahan, U., Ipek, A., and Sozcu, A. (2014). Yolk sac fatty acid composition, yolk absorption, embryo development, and chick quality during incubation in eggs from young and old broiler breeders. Poultry Sci 93, 2069-2077. Shand, J.H., West, D.W., Mccartney, R.J., Noble, R.C., and Speake, B.K. (1993). The esterification of cholesterol in the yolk-sac membrane of the chick-embryo. Lipids 28, 621-625. Sheng, G., and Foley, A.C. (2012). Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development. Ann N Y Acad Sci 1271, 97-103. Shin, M., Nagai, H., and Sheng, G. (2009). Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development 136, 595-603. Silver, L., and Palis, J. (1997). Initiation of murine embryonic erythropoiesis: a spatial analysis. Blood 89, 1154-1164. Simmers, P., Gishto, A., Vyavahare, N., and Kothapalli, C.R. (2015). Nitric oxide stimulates matrix synthesis and deposition by adult human aortic smooth muscle cells within three-dimensional cocultures. Tissue Eng Part A 21, 1455-1470. Soulet, F., Yarar, D., Leonard, M., and Schmid, S.L. (2005). SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 16, 2058-2067. Speake, B.K., Murray, A.M.B., and Noble, R.C. (1998). Transport and transformations of yolk lipids during development of the avian embryo. Prog Lipid Res 37, 1-32. Taylor, M.J., Perrais, D., and Merrifield, C.J. (2011). A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. Plos Biol 9, e1000604. Uni, Z., Yadgary, L., and Yair, R. (2012). Nutritional limitations during poultry embryonic development. J Appl Poultry Res 21, 175-184. Wang, G., Moniri, N.H., Ozawa, K., Stamler, J.S., and Daaka, Y. (2006). Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci U S A 103, 1295-1300. Warnock, D.E., Hinshaw, J.E., and Schmid, S.L. (1996). Dynamin self-assembly stimulates its GTPase activity. Journal of Biological Chemistry 271, 22310-22314. Wyatt, R.D., and Howarth, B. (1976). Effect of dimethyl-sulfoxide on embryonic survival and subsequent chick performance. Poultry Sci 55, 579-582. Yadgary, L., Cahaner, A., Kedar, O., and Uni, Z. (2010). Yolk sac nutrient composition and fat uptake in late-term embryos in eggs from young and old broiler breeder hens. Poultry Sci 89, 2441-2452. Yadgary, L., and Uni, Z. (2012). Yolk sac carbohydrate levels and gene expression of key gluconeogenic and glycogenic enzymes during chick embryonic development. Poult Sci 91, 444-453. Yadgary, L., Wong, E.A., and Uni, Z. (2014). Temporal transcriptome analysis of the chicken embryo yolk sac. BMC Genomics 15, 690. Yafei, N., and Noble, R.C. (1990). Further observations on the association between lipid-metabolism and low embryo hatchability in eggs from young broiler birds. J Exp Zool 253, 325-329. Yoshizaki, N., Soga, M., Ito, Y., Mao, K.M., Sultana, F., and Yonezawa, S. (2004). Two-step consumption of yolk granules during the development of quail embryos. Dev Growth Differ 46, 229-238. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70606 | - |
| dc.description.abstract | 禽胚孵化之中後期為其生長發育的重要階段,主要仰賴腹腔延伸出之卵黃囊膜(Yolk sac membrane, YSM)將卵黃包覆,由內胚層上皮細胞(Endodermal epithelial cells, EECs)對脂質進行吸收及利用,然而YSM對脂質吸收及利用的具體機制仍尚待釐清,本研究將探討EECs對脂質的吸收機制,期望期望研究結果對家禽產業有所貢獻。卵黃內大部分的脂質為由包覆三酸甘油酯的極低密度脂蛋白(Very low density lipoprotein, VLDL)所組成,而VLDL主要透過網格蛋白媒介包吞作用(Clathrin-mediated endocytosis, CME)進入細胞。CME仰賴許多蛋白共同協調,其中發動蛋白(Dynamin, DNM)之功能較為獨立且易於調控,因此本研究將主要探討DNM是否於EECs中扮演協助脂質吸收的角色,以了解EECs利用脂質機制與後續對胚發育影響之研究。
本研究以日本鵪鶉作為試驗動物,首先探討孵化期間YSM中乙醯-輔酶A-膽固醇乙醯轉移酶(Sterol O-acyltransferase, SOAT)、apolipoprotein B(ApoB)、cell death-inducing DFFA-like effector(CIDE),以及DNM之mRNA表現,希望建立出YSM對脂質吸收、修飾和脂蛋白組成之路徑圖,再從中判定DNM於YSM的重要性。結果發現YSM之DNM1 mRNA於入孵第10天時有最高表現,SOAT1主要表現於入孵第10-14天,CIDEA及apoB則分別於入孵第16及18天有最高表現量,並皆與入孵第2天有顯著差異,由此結果我們認為DNM1於YSM中可能確實扮演協助脂質吸收的角色。其作用促使脂質進入YSM後經SOAT1進行膽固醇轉酯,並由apoB及CIDEA重新合成VLDL後再運送禽胚體內提供生長所需能量。接著本試驗將直接於入孵第3天之日本鵪鶉胚卵黃施打DNM之抑制藥物:dynasore,並於孵化第10天探討其發育狀況,以分析DNM於YSM之重要性。其結果發現相較於對照組、操作對照對照組以及載體對照組(DMSO),dynasore處理確實會影響胚的發育。接著由EECs層面嘗試對其DNM進行抑制及活化,並分析EECs對螢光標定VLDL的吸收是否會受到影響。Dynasore對EECs DNM進行抑制的結果發現,經過dynasore處理20及30分鐘,其細胞內的螢光訊號顯著低於未受dynasore處理之對照組。試驗進一步分析EECs對不同濃度VLDL之抑制效果,結果顯示不論800、1050及1300 µg/mL 之VLDL,經dynasore處理30分鐘皆能有效抑制EECs對其進行吸收。接著我們推測EECs若缺乏脂質,其細胞內DNM1、SOAT1、apoB及CIDEA的mRNA 表現也會受到影響,試驗中以dynasore處理EECs 3小時,抑制其對VLDL的吸收長達1天再萃取其RNA,然而mRNA之結果發現經過dynasore處理其基因表現皆不會受到改變。最後試驗利用S-Nitroso-L-glutathione(GSNO)對DNM進行活化,結果發現將EECs處理GSNO 30分鐘,再與800 µg/mL之螢光標定VLDL培養15及20分鐘,EECs內的螢光訊號會顯著的高於其對照組。 綜合上述,我們發現DNM確實於YSM中扮演協助脂質吸收的重要角色,此外也成功對EECs之DNM進行調控。然而,本試驗DNM1、SOAT1、apoB及CIDEA的mRNA表現並不會因為EECs內脂質的減少而受到改變,建議未來使用其他方法探討其脂質利用相關蛋白活性。儘管如此,希望未來能利用此研究結果,進一步探討EECs對脂質的利用機制,並期望最終能改善禽胚之發育狀況。 | zh_TW |
| dc.description.abstract | During avian embryonic development mid and late stages are critical, of which the yolk sac membrane (YSM) extends from the avian abdomen to embrace the whole yolk, and endodermal epithelial cells (EECs) within the YSM are liable for the absorption and utilization of the lipids. However, the mechanism of lipids absorption and utilization by YSM are still unclear. In this study, we investigated lipid absorption mechanism in EECs, in attempt to make contributions to poultry industry. The lipids in the yolk are mostly composed of the very low density lipoprotein (VLDL), whose uptake mainly depends on the clathrin-mediated endocytosis (CME) on the cell membranes, CME relies on the coordination of lot of proteins to help membrane invagination, and the vesicle formation through the regulation of dynamin (DNM). In addition, we focused on the role of DNM in the mechanism of lipids utilization in EECs.
We utilized Japanese quails as an animal model, to examine mRNA expression patterns of sterol O-acyltransferase 1 (SOAT1), apolipoprotein B (ApoB), families of cell death-inducing DFFA-like effector (CIDE) and DNM in YSM along the development and to establish the pathway of lipids absorption, modification and lipoprotein assembly for the regulation of DNM in YSM. The mRNA expression of DNM1 reached a peak at day 10 of incubation, SOAT1, CIDEA and ApoB expression were expressed aboundently during incubation day 10-14,16 and 18 respectively, and all the results were significantly different with those at day 2 (P < 0.05), suggesting DNM1 helps the lipids absorption in YSM. Next, a DNM inhibitor: dynasore was injected into fertilized eggs of Japanese quail at incubation day 3, and the phenotypes were observed at day 10. Results demonstrated the complete development percentage of embryos were significantly lower in the dynasore group than the controls, sham and vehicle-groups (P<0.05). The activities of DNMs were also verified by the absorptions of fluorescence labeled-VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after pre-treatments of dynasore for 20 and 30 minutes. The absorptions of VLDL at various levels (800, 1050, and 1300 µg/mL of DiI-yVLDL) were blocked in EECs with the pre-treated dynasore. Third, we examine if the mRNA levels of DNM1, SOAT1, ApoB and CIDEA were affected in EECs, due to the lack of lipid resources. EECs were pre-treated with dynasore for 3 hours to inhibit the VLDL absorption for 24 hours before the mRNA extraction. Nonetheless, all these gene expression levels were not altered. Finally, we tested treating EECs with S-Nitroso-L-glutathione (GSNO, a DNM activator) for 30 minutes, and results showed that the intake of DiI-yVLDL was increased significantly by GSNO. In conclusion, DNM indeed serves a critical role of the lipids absorption in YSM. Furthermore, we successfully manipulated the DNM activity in EECsm despite that the mRNA expression of DNM, SOAT1, ApoB and CIDEA were not changed in EEC, suggesting the amount and activities of these target gene should be analyzed by other methods. These results delineated the mechanism of lipids utilization in EECs, and way improve the avian embryonic development in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:23Z (GMT). No. of bitstreams: 1 ntu-107-R05626024-1.pdf: 25346064 bytes, checksum: b4af61daff79ed9d5f56c5014cfefa2b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定 I
誌謝 II 中文摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XII 壹、 文獻探討 1 一、 幼禽對卵黃營養分之利用 1 二、 卵黃囊膜 (Yolk sac membrane, YSM)之組成及功能 4 三、 卵黃囊膜對脂質的修飾 7 四、 卵黃囊膜對極低密度脂蛋白的重組 11 五、 卵黃囊膜內胚層上皮細胞之脂蛋白受體 13 六、 發動蛋白(Dynamin, DNM)之結構與研究目的 14 貳、 試驗動機與設計 17 參、 材料與方法 18 一、 脂質利用相關基因於日本鵪鶉胚YSM之檢測 18 (1) 受精蛋之採集與孵化 18 (2) 日本鵪鶉胚YSM之收集及RNA萃取 18 (3) 反轉錄反應(reverse transcription, RT) 19 (4) 即時定量 PCR(real-time PCR) 20 二、 Dynasore於鵪鶉胚卵黃之注射 22 (1) 藥物之注射 22 (2) 注射後處理與結果分析 24 三、 Dynasore處理對EECs吸收DiI-yVLDL之影響 25 (1) 緩衝液及培養液之配置 25 (2) 螢光VLDL之收集與配置 25 (3) Western blot 27 (4) EECs初代培養 27 (5) Dynasore與DiI-yVLDL之處理 29 四、 GSNO處理對EECs吸收DiI-yVLDL之影響 30 五、 統計及分析 30 肆、 試驗結果 31 一、 脂質利用相關基因於日本鵪鶉胚YSM之檢測 31 (1) SOAT1 mRNA表現 31 (2) ApoB mRNA表現 31 (3) CIDE mRNA表現 32 (4) DNM mRNA表現 32 二、 Dynasore於鵪鶉胚卵黃之注射 37 三、 Dynasore處理對EECs吸收DiI-yVLDL之影響 40 (1) yVLDL之apoB表現 40 (2) Dynasore對EECs之有效處理時間 40 (3) Dynasore對EECs吸收不同濃度VLDL之抑制效果 41 四、 脂質利用相關基因於dynasore處理之EECs內的表現 48 (1) Dynasore對EECs吸收DiI-yVLDL 24小時之抑制測試 48 (2) mRNA之分析 48 五、 GSNO處理對EECs吸收DiI-yVLDL之影響 52 伍、 討論 56 陸、 結論 62 柒、 參考文獻 63 圖目錄 圖一、卵黃囊、卵黃囊膜及卵黃於雞胚孵化期間之重量變化 2 圖二、營養物於禽胚卵黃囊之利用情形 3 圖三、30與50週齡母雞之禽胚對脂質吸收和體重的關係比 3 圖四、卵黃囊膜之型態與構成 6 圖五、禽胚卵黃囊膜之發育 6 圖六、火雞孵化期間卵黃囊膜之ACAT活性 10 圖七、比較卵黃、卵黃囊膜及血液之VLDL脂蛋白表現 12 圖八、網格蛋白囊泡行程之步驟 15 圖九、發動蛋白調節之細胞膜截切 15 圖十、發動蛋白之結構 16 圖十一、未受精及入孵第三日之日本鵪鶉受精蛋 23 圖十二、蛋殼開孔與針筒之注射 23 圖十三、蛋殼開孔之封膜 24 圖十四、入孵後第八及十日之日本鵪鶉胚 24 圖十五、懸浮離心管表面之yVLDL及DiI-yVLDL。 26 圖十六、EECs之採樣 28 圖十七、Dynasore及DiI-yVLDL處理EECs之流程圖 29 圖十八、GSNO及DiI-yVLDL處理EECs之流程圖 30 圖十九、SOAT1於日本鵪鶉孵化期間YSM之mRNA表現變化。 33 圖二十、ApoB於日本鵪鶉孵化期間YSM之mRNA表現變化。 34 圖二十一、CIDE於日本鵪鶉孵化期間YSM之mRNA表現變化。 35 圖二十二、DNMs於日本鵪鶉孵化期間YSM之mRNA表現變化。 36 圖二十三、Dynasore注射對日本鵪鶉發育情況之影響 38 圖二十四、Dynasore注射對日本鵪鶉發育情況之影響 39 圖二十五、WB對卵黃分離VLDL之apoB表現分析 42 圖二十六、EECs對DiI-yVLDL之吸收 43 圖二十七、Dynasore不同處理時間對EECs吸收DiI-yVLDL之影響 44 圖二十八、Dynasore不同處理時間對EECs吸收DiI-yVLDL之影響 45 圖二十九、Dynasore對EECs吸收不同濃度VLDL之抑制效果 46 圖三十、Dynasore對EECs吸收不同濃度VLDL之抑制效果 47 圖三十一、Dynasore對EECs吸收DiI-yVLDL 24小時之抑制測試 49 圖三十二、DNM1及SOAT1 mRNA於dynasore處理EEC之表現 50 圖三十三、ApoB及CIDEA mRNA於dynasore處理之EECs之表現 51 圖三十四、GSNO處理對EECs吸收DiI-yVLDL之影響 53 圖三十五、GSNO處理對EECs吸收DiI-yVLDL之影響 54 圖三十六、GSNO處理對EECs吸收DiI-yVLDL之影響 55 圖三十七、EECs對脂質吸收及利用之路徑推測圖 61 表目錄 表一、雞胚孵化期間卵黃、YSM及血液之脂肪組成變化 9 表二、孵化第15天之雞胚YSM及肝臟之膽固醇酯化能力 9 表三、反轉錄反應溶液的組成 19 表四、即時定量PCR溶液的組成 20 表五、Real-time PCR 使用之引子 21 | |
| dc.language.iso | zh-TW | |
| dc.subject | 禽胚發育 | zh_TW |
| dc.subject | 發動蛋白 | zh_TW |
| dc.subject | 內胚層上皮細胞 | zh_TW |
| dc.subject | 極低密度脂蛋白 | zh_TW |
| dc.subject | 卵黃囊膜 | zh_TW |
| dc.subject | Dynamin | en |
| dc.subject | Avian embryonic development | en |
| dc.subject | Endodermal epithelial cells | en |
| dc.subject | Very low density lipoprotein | en |
| dc.subject | Yolk sac membrane | en |
| dc.title | 發動蛋白於日本鵪鶉卵黃囊膜之內胚層上皮細胞扮演協助脂質吸收之重要角色 | zh_TW |
| dc.title | Dynamin serves a crucial role in lipid absorption in endodermal epithelial cells of Japanese quail yolk sac membrane | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉逸軒,陳洵一,林原佑 | |
| dc.subject.keyword | 禽胚發育,發動蛋白,內胚層上皮細胞,極低密度脂蛋白,卵黃囊膜, | zh_TW |
| dc.subject.keyword | Avian embryonic development,Dynamin,Endodermal epithelial cells,Very low density lipoprotein,Yolk sac membrane, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201802822 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 24.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
