請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70584完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林思洸(Sze-Kwan Lin) | |
| dc.contributor.author | HUI CHIEN | en |
| dc.contributor.author | 錢蕙 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:31:45Z | - |
| dc.date.available | 2021-08-30 | |
| dc.date.copyright | 2018-08-30 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | Reference
1. Muller-Ladner, U., et al., Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol, 2005. 1(2): p. 102-10. 2. Smolen, J.S. and G. Steiner, Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov, 2003. 2(6): p. 473-88. 3. Ferrari-Lacraz, S., et al., Targeting IL-15 receptor-bearing cells with an antagonist mutant IL-15/Fc protein prevents disease development and progression in murine collagen-induced arthritis. J Immunol, 2004. 173(9): p. 5818-26. 4. Neumann, E., S. Gay, and U. Muller-Ladner, The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: new insights from animal models. Arthritis Rheum, 2005. 52(10): p. 2960-7. 5. Schmutz, C., et al., Chemokine receptors in the rheumatoid synovium: upregulation of CXCR5. Arthritis Res Ther, 2005. 7(2): p. R217-29. 6. Zheng, B., et al., CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum, 2005. 52(2): p. 620-6. 7. van der Voort, R., et al., Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum, 2005. 52(5): p. 1381-91. 8. Mast N, Lin JB, et al., Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy. Pharmacol, 2015 88(3): 428–36 9. Nelson ER, Wardell SE, et al., 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342(6162): 1094–8. 10. Neidhart, M., et al., Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum, 2000. 43(12): p. 2634-47. 11. Ospelt, C., et al., Toll-like receptors in rheumatoid arthritis joint destruction mediated by two distinct pathways. Ann Rheum Dis, 2004. 63 Suppl 2: p. ii90-ii91. 12. Symmons, D.P. and S.E. Gabriel, Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat Rev Rheumatol, 2011. 7(7): p. 399-408. 13. Crowson, C.S., et al., Contribution of obesity to the rise in incidence of rheumatoid arthritis. Arthritis Care Res (Hoboken), 2013. 65(1): p. 71-7. 14. Neumann, E., et al., Adipocytokines as driving forces in rheumatoid arthritis and related inflammatory diseases? Arthritis Rheum, 2011. 63(5): p. 1159-69. 15. Brown, M.S. and J.L. Goldstein, Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J Lipid Res, 2009. 50 Suppl: p. S15-27. 16. Müller-Ladner U, Pap T, Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2005 1(2):102-10 17. Ospelt C1, Neidhart M, Gay RE, Gay S , Synovial activation in rheumatoid arthritis. Front Biosci. 2004 1(9):2323-34.. 18. Wagner, B.L., et al., Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol, 2003. 23(16): p. 5780-9. 19. Ghisletti, S., et al., Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell, 2007. 25(1): p. 57-70. 20. Im, S.S., et al., Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab, 2011. 13(5): p. 540-9. 21. Alan J SilmanEmail and Jacqueline E Pearson, Epidemiology and genetics of rheumatoid arthritis. Arthritis Research & Therapy2002. 4 (Suppl 3) :S265 22. Itabe, H., et al., Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem, 2003. 134(3): p. 459-65. 23. L A Criswel, et al. Smoking interacts with genetic risk factors in the development of rheumatoid arthritis among older Caucasian women. Ann Rheum Dis. 2006; 65(9): 1163–1167.. 24. Stocker, R. and J.F. Keaney, Jr., New insights on oxidative stress in the artery wall. J Thromb Haemost, 2005. 3(8): p. 1825-34. 25. Fox, P.L., et al., Ceruloplasmin and cardiovascular disease. Free Radic Biol Med, 2000. 28(12): p. 1735-44. 26. Schroepfer, G.J., Jr., Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev, 2000. 80(1): p. 361-554. 27. Lin, Y.Y. and L.L. Smith, Sterol metabolism. 28. Biosynthesis and accumulation of cholest-5-ene-3beta, 24-diol (cerebrosterol) in developing rat brain. Biochim Biophys Acta, 1974. 348(2): p. 189-96. 28. Kandutsch, A.A. and H.W. Chen, Inhibition of sterol synthesis in cultured mouse cells by cholesterol derivatives oxygenated in the side chain. J Biol Chem, 1974. 249(19): p. 6057-61. 29. Schwarz, M., et al., Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J Biol Chem, 1996. 271(30): p. 18024-31. 30. Wikvall, K., Hydroxylations in biosynthesis of bile acids. Isolation of a cytochrome P-450 from rabbit liver mitochondria catalyzing 26-hydroxylation of C27-steroids. J Biol Chem, 1984. 259(6): p. 3800-4. 31. Dahlback, H. and I. Holmberg, Oxidation of 5 beta-cholestane-3 alpha,7 alpha, 12 alpha-triol into 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid by cytochrome P-450(26) from rabbit liver mitochondria. Biochem Biophys Res Commun, 1990. 167(2): p. 391-5. 32. Cali, J.J., et al., Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem, 1991. 266(12): p. 7779-83. 33. Babiker, A., et al., Elimination of cholesterol as cholestenoic acid in human lung by sterol 27-hydroxylase: evidence that most of this steroid in the circulation is of pulmonary origin. J Lipid Res, 1999. 40(8): p. 1417-25. 34. Singh, D., et al., Electron spin resonance spectroscopic demonstration of the generation of reactive oxygen species by diseased human synovial tissue following ex vivo hypoxia-reoxygenation. Ann Rheum Dis, 1995. 54(2): p. 94-9. 35. Merry, P., et al., Oxidative damage to lipids within the inflamed human joint provides evidence of radical-mediated hypoxic-reperfusion injury. Am J Clin Nutr, 1991. 53(1 Suppl): p. 362s-369s. 36. Kurien, B.T. and R.H. Scofield, Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev, 2008. 7(7): p. 567-73. 37. Winyard, P.G., et al., Presence of foam cells containing oxidised low density lipoprotein in the synovial membrane from patients with rheumatoid arthritis. Ann Rheum Dis, 1993. 52(9): p. 677-80. 38. James, M.J., et al., Low density lipoprotein of synovial fluid in inflammatory joint disease is mildly oxidized. Lipids, 1998. 33(11): p. 1115-21. 39. Nakagawa, T., et al., Lectin-like oxidized low-density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan-induced arthritis. Arthritis Rheum, 2002. 46(9): p. 2486-94. 40. Kelly, G., A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev, 2010. 15(3): p. 245-63. 41. Michishita, E., et al., Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell, 2005. 16(10): p. 4623-35. 42. Tennen, R.I., E. Berber, and K.F. Chua, Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev, 2010. 131(3): p. 185-92. 43. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. Cell, 2005. 120(4): p. 483-95. 44. Shi, T., et al., SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem, 2005. 280(14): p. 13560-7. 45. Schlicker, C., et al., Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol, 2008. 382(3): p. 790-801. 46. Lombard, D.B., et al., Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol, 2007. 27(24): p. 8807-14. 47. Pfister, J.A., et al., Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One, 2008. 3(12): p. e4090. 48. Nakagawa, T., et al., SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009. 137(3): p. 560-70. 49. Levitan, I., S. Volkov, and P.V. Subbaiah, Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal, 2010. 13(1): p. 39-75. 50. Punj, V., et al., Induction of CCL20 production by Kaposi sarcoma-associated herpesvirus: role of viral FLICE inhibitory protein K13-induced NF-kappaB activation. Blood, 2009. 113(22): p. 5660-8. 51. Veerle Bieghs, Tim Hendrikx, The Cholesterol Derivative 27-Hydroxycholesterol Reduces Steatohepatitis in Mice. Gastroenterology, 2013.144(1):p167-78. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70584 | - |
| dc.description.abstract | 類風溼性關節炎是一種由多種細胞(包含單核細胞, 關節滑膜細胞,內皮細胞, 其他免疫細胞)共同調控的系統性疾病。類風溼性關節炎也是心血管疾病的危險因子。在病患的關節滑液中發現與atheroma有類似的細胞組成。27-hydroxycholesterol會加劇粥狀動脈硬化。而在關節炎之中,類風濕性關節炎滑液細胞(RASF)扮演著重要的腳色。本實驗希望探討HepG2(人類肝癌細胞株)在fatty acid的刺激下 sterol 27-hydroxylase (CYP27A1) 的調控,以及RASF是否會受到27-hydroxycholesterol的各種影響來探討肥胖及膽固醇代謝對於類風濕性關節炎的影響。實驗結果發現,人類肝癌細胞株在受到oleic acid(油酸)的刺激下,CYP27A1的蛋白表現上升。並且在培養液中的27HC含量上升。另外的實驗中,27HC會促進RASF細胞的增生;並且造成多種發炎介質的濃度上升。且在動物實驗中發現肥胖的飲食確實能加劇關節炎的發展,發炎細胞的浸潤與滑液細胞的增生,而抑制CYP27A1的藥物anastrozole使用的組別小鼠在脂肪肝與關節炎的症狀都有減輕。總結上述的發現,肥胖會使肝臟細胞脂質代謝改變而CYP27A1增加,並產生較多量的27HC,而27HC可能是造成關節炎加劇的原因。 | zh_TW |
| dc.description.abstract | Rheumatoid arthritis is a systemic disease that is regulated by a variety of cells, including monocytes, synovial cells, endothelial cells, and other immune cells. Rheumatoid arthritis is also a risk factor for cardiovascular disease. A similar cellular composition to atheroma was found in the synovial fluid of the patient. 27-hydroxycholesterol exacerbates atherosclerosis. In arthritis, rheumatoid arthritis synovial cells (RASF) play an important role. This experiment hopes to investigate the regulation of sterol 27-hydroxylase (CYP27A1) stimulated by fatty acid in HepG2 (human hepatocarcinoma cell line), and whether RASF will be affected by 27-hydroxycholesterol to explore obesity and cholesterol metabolism for rheumatoid arthritis. Impact. The experimental results showed that the protein expression of CYP27A1 was increased in human hepatoma cell lines stimulated by oleic acid (oleic acid). And the 27HC content in the culture solution increased. In another experiment, 27HC promoted the proliferation of RASF cells; and caused an increase in the concentration of various inflammatory mediators. And in animal experiments, it is found that the diet of obesity can indeed aggravate the development of arthritis, the infiltration of inflammatory cells and the proliferation of synovial cells, while the mice used in the anastrozole that inhibit CYP27A1 have symptoms of fatty liver and arthritis. Reduced. Summarizing the above findings, obesity will change the lipid metabolism of liver cells and increase CYP27A1, and produce a larger amount of 27HC, which may be the cause of arthritis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:31:45Z (GMT). No. of bitstreams: 1 ntu-107-R04422003-1.pdf: 1251133 bytes, checksum: d78cd7857881e071cfd423ea929e6ef4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書…………………………………………………………………………i 謝誌 II 中文摘要 III 英文摘要 iV 第一章導論 3 1.1 類風溼性關節炎 3 1.2類風溼性關節炎的細胞變化 3 1.2.1 RASF的活化 3 1.2.2 發炎細胞的活化 4 1.3類風溼性關節炎與肥胖的關係 4 1.3.1肥胖與關節炎的關係 4 1.3.2 肥胖與關節炎的致病機制 4 1.4膽固醇在人體內的恆定 5 1.4.1膽固醇 5 1.4.2 LXRs 5 1.5 27HC 5 1.5.1 27-HC的組成…………………………………………………………………………………….5 1.6 Oxysterol 扮演的腳色 6 1.6.1 oxysterol 6 1.6.2 Sterol 27-hdroxylase 6 第二章 實驗目的 7 第三章材料與方法 10 3.1 實驗細胞株 10 3.2 細胞繁殖速率分析 10 3.2.1.2.1 細胞計數 10 3.2.2 RASF細胞對27HC之增生率分析 10 3.3蛋白質的萃取 10 3.4西方點墨法(Western blot) 11 3.5 OA(oleic acid)對HepG2細胞在Cyp27A1與27HC表現的影響………………….12 3.5.1不同濃度的OA對HepG2細胞在Cyp27A1表現的影響………….…….12 3.5.2 OA刺激對HepG2細胞在27HC表現的影響 13 3.6 27HC對RASF的CCL2與IL-6的影響 14 3.6.1 27HC對RASF的CCL2的影響 14 3.6.1 27HC對RASF的IL-6的影響……………………………………………………………14 3.7 Anastrozole對於OA刺激CYP27A1蛋白表現量的影響 15 3.8 動物實驗 16 第四章實驗結果 17 4.1 OA濃度對HepG2 細胞的影響 17 4.1.1 OA濃度影響 CYP27A1在HepG2的蛋白表現 17 4.1.2 ox-LDL CYP27A1在HepG2的蛋白表現影響不顯著 17 4.1.3 OA刺激對於HepG2培養液中27HC含量的影響 17 4.1.4 OA4.1.4 anastrozole對於OA刺激HepG2後培養液中27HC含量的影響………………………………………………………………………………………………………….……17 4.1.5 anastrozole對於OA刺激HepG2後培養液中27HC含量的影響……17 4.2 27-hydroxycholesterol對RASF 細胞增生率的影響 18 4.2.1 27-hydroxycholesterol對RASF細胞增生率的影響 18 4.2.2不同27-hydroxycholesterol刺激時間對RASF 細胞增生的影響 18 4.3 27-hydroxycholesterol對RASF 釋出發炎介質的影響 19 4.3.1 27-hydroxycholesterol刺激對於RASF培養液中CCL2含量的影響 19 4.3.2不同的27-hydroxycholesterol刺激時間對於RASF培養液中CCL2含量的影響 19 4.3.3不同的27-hydroxycholesterol刺激時間與濃度對於RASF培養液中IL-6含量的影響 19 4.4 免疫細胞對於27-hydroxycholesterol的反應…………………………………………….19 4.5 動物實驗 19 4.5.1不同的不同飲食條件下的小鼠的關節炎發展差異………………………...19 4.5.2 不同的不同飲食條件下的小鼠的脂肪肝發展差異 19 第五章討論 20 5.1 OA對HepG2細胞的影響 20 5.2 27-hydroxycholesterol對RASF細胞的影響 20 5.3 27-hydroxycholesterol的產生與效益的連結 21 參考文獻 22 附錄 28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 27羥基膽固醇 | zh_TW |
| dc.subject | 類風溼性關節炎 | zh_TW |
| dc.subject | rheumatoid arthritis | en |
| dc.subject | 27-hydroxycholesterol | en |
| dc.title | 27羥基膽固醇對類風濕性關節炎的影響 | zh_TW |
| dc.title | The impact of 27-hydroxycholesterol on rheumatoid arthritis propagation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭生興,洪志遠 | |
| dc.subject.keyword | 類風溼性關節炎,27羥基膽固醇, | zh_TW |
| dc.subject.keyword | rheumatoid arthritis,27-hydroxycholesterol, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU201802666 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
