Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70577Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | |
| dc.contributor.author | Yu-Hsuan Chuang | en |
| dc.contributor.author | 莊侑軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:31:34Z | - |
| dc.date.available | 2028-07-18 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | [ 1] I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool,” International Journal of Heat and Mass Transfer, vol. 48, pp. 2407-2419, 2005.
[ 2] P. Vassallo, R. Kumar, and S. D’Amico, “Pool boiling heat transfer experiments in silica–water nano-fluids,” International Journal of Heat and Mass Transfer, vol. 47, pp. 407-411, 2004. [ 3] A. Amiri, M. Shanbedi, H. Amiri, S. Zeinali Heris, S.N. Kazi, B.T. Chew, and H. Eshghi, “Pool boiling heat transfer of CNT/water nanofluids,” Applied Thermal Engineering, vol. 71, pp. 450-459, 2014. [ 4] J. H. Lee, T. Lee, and Y. H. Jeong, “The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles,” International Journal of Heat and Mass Transfer, vol. 61, pp. 432-438, 2013. [ 5] S. M. Kwark, M. Amaya, R. Kumar, G. Moreno, and S. M. You, “Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters,” International Journal of Heat and Mass Transfer, vol. 53, pp. 5199-5208, 2010. [ 6] J. T. Cieśliński and T. Z. Kaczmarczyk, “The Effect of Pressure on Heat Transfer during Pool Boiling of Water-Al(2)O(3) and Water-Cu Nanofluids on Stainless Steel Smooth Tube,” Chemical and Process Engineering, vol. 32, pp. 321-332, 2011. [ 7] K. H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” Applied Physics Letters, vol. 100, 241603, 2012. [ 8] K. H. Chu, Y. S. Joung, R. Enright, C. R. Buie, and E. N. Wang, “Hierarchically structured surfaces for boiling critical heat flux enhancement,” Applied Physics Letters, vol. 102, 151602, 2013. [ 9] H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, “Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,” International Journal of Heat and Mass Transfer, vol. 52, pp. 5459-5471, 2009. [ 10] R. Chen, M. C. Lu, V. Srinivasan, Z. Wang, H. H. Cho, and A. Majumdar, “Nanowires for Enhance Boiling Heat Transfer,” Nano Letters, vol. 9, No. 2, pp. 548-553, 2009. [ 11] Y. Takata, S. Hidaka, M. Masuda, and T. Ito, “Pool boiling on a superhydrophilic surface,” International Journal of Energy Research, vol. 27, pp. 111-119, 2003. [ 12] Chen Y., Mo D. C., Zhao H. B., Ding N., and Lu S. S., “Pool boiling on superhydrophilic surface with TiO2 nanotube arrays,” Science in China Series E: Technological Sciences,” vol. 52, No. 6, pp. 1596-1600, 2009. [ 13] A. R. Betz, J. Xu, H. Qiu, and D. Attinger, “Do surfaces with mixed hydophilic and hydrophobic areas enhance pool boiling?,” Applied Physics Letters, vol. 97, 141909, 2010. [ 14] A. R. Betz, J. Jenkins, C. J. Kim, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” International Journal of Heat and Mass Transfer, vol. 57, pp. 733-741, 2013. [ 15] H. J. Jo, D. I. Yu, H. Noh, H. S. Park, and M. H. Kim, “Boiling on spatially controlled heterogeneous surfaces: Wettability patterns on microstructures,” Applied Physics Letters, vol. 106, 181602, 2015. [ 16] L. Dong, X. Quan, and P. Cheng, “An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures,” International Journal of Heat and Mass Transfer, vol. 71, pp. 189-196, 2014. [ 17] C. H. Choi, M. David, Z. Gao, A. Chang, M. Allen, H. wang, and C. H. Chang, “Large-scale generation of patterned bubble arrays on printed bi-functional boiling surfaces,” Nature Scientific Reports, vol. 6, 23760, 2016. [ 18] M. M. Rahman, J. Pollack, and M. McCarthy, “Increasing boiling heat transfer using low heat conductivity materials,” Nature Scientific Reports, vol. 5, 13145, 2015. [ 19] D. J. Huang and T. S. Leu, “Fabrication of a wettability-gradient surface on copper by screen-printing techniques,” Journal of Micromechanics and Microengineering, vol. 25, 085007, 2015. [ 20] T. Young, 'An essay on the cohesion of fluids,' Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805. [ 21] R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936. [ 22] A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces.,' Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944. [ 23] E. Nolan, R. Rioux, P. X. Jiang, G. P. Peterson, and C. H. Li, 'Experimental study of contact angle and active nuleation site distribution on nanostructure modified copper surface in pool boiling heat transfer enhancement,' Heat Transfer Research, vol. 44, pp. 115-131, 2013. [ 24] S. G. Bankoff, 'Ebullition from solid surfaces in the absence of a pre-existing gaseous phase,' Journal of Heat Transfer-Transactions of the ASME, vol. 79, pp. 735–740, 1957. [ 25] H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, 'Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,' International Journal of Heat and Mass Transfer, vol. 52, pp. 5459-5471, 2009. [ 26] W. Fritz, 'Maximum volume of vapor bubbles,' Physikalische Zeitschrift, vol. 36, pp. 379-384, 1935. [ 27] C. C. Hsu, W. C. Chiu, L. S. Kuo, and P. H. Chen, 'Reversed boiling curve phenomenon on surfaces with interlaced wettability,' AIP Advances, vol. 4, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70577 | - |
| dc.description.abstract | 本研究使用網版印刷技術對紅銅圓柱進行表面改質,其中,使用外徑為25mm、內徑為18mm及長為40mm之中空紅銅圓柱為基材。並且在圓柱外表面進行不同傾斜角度之交錯疏水線狀圖形之改質,使其成為異質交錯潤濕性表面,以此觀察非均質潤濕性表面對池沸騰熱傳表現之影響。在本研究中,以去離子水為工作流體進行池沸騰實驗,並觀察且探討不同傾斜角度之交錯疏水線圖形對沸騰氣泡動力學之影響。最後以表面溫度、熱通量及池沸騰熱傳係數評估不同表面之池沸騰熱傳表現。
本研究中有4種不同交錯疏水線圖形之傾斜角,分別為0∘、30∘、60∘及90∘,其中,θ=30∘之異質潤濕交錯表面擁有最好的池沸騰熱傳表現。由於此表面使得氣泡擁有內部結合及外部結合,且此兩種結合之發生頻率相同,此現象使得銅表面能夠保留再潤濕表面所需之水流動路徑,因此不會產生巨大之氣膜覆蓋表面。另外,本研究也藉由高速攝影機所紀錄之影像觀察可得,θ=30∘之異質潤濕交錯表面上,因為在浮力方向擁有較為恰當之距離,提供氣泡能夠較容易地在浮力方向發生結合現象,造成氣泡之脫離半徑下降且脫離頻率上升。 在本研究中,於低熱通量之條件下,θ=0∘、30∘、60∘及90∘之非均質潤濕性表面擁有分別為89.27%、 104.59%、 103.99% 及 71.65%之池沸騰熱傳係數增益質。由於每種表面有不同之氣泡結合現象,因此隨著熱通量上升,不同的交錯疏水線狀圖形傾斜角度之表面間池沸騰熱傳表現之差異逐漸擴大。 | zh_TW |
| dc.description.abstract | In this study, screen printing technique was used to fabricate the heterogeneous wettable structure on a copper surface. The pool boiling heat transfer experiments were conducted with a hollow copper cylinder of 25mm outer diameter and 40mm long, using DI water as the working fluid. The effect of the heterogeneous wettable surfaces with various inclination angles of inclined line pattern was investigated by carry out pool boiling heat transfer experiments. The bubble dynamics, heat fluxes, surface temperatures and average heat transfer coefficient (HTC) were surveyed in this experimental work. The influences of different inclination angles of interlaced lines pattern on bubble dynamics were observed in this study. There are two types of bubble coalescence happen on the heated surface. Different frequency of these two merge ways result different heat transfer performance.
There are four different inclination angles of interlaced line patterns, 0°,30°,60° and 90°, respectively. Among these surfaces, surface with θ=30° patterns produced the best heat transfer performance. Due to the proper distance in buoyancy direction causes excellent bubble coalesce behavior and better rewetting phenomenon. The highest enhancement in HTC of θ=0°,30°,60° and 90° is 89.27%, 104.59%, 103.99% and 71.65%, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:31:34Z (GMT). No. of bitstreams: 1 ntu-107-R05522121-1.pdf: 6467613 bytes, checksum: 0d5437729a4a8a386b0ce01d5b6101bf (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv NOMENCLATURE v ABBREVIATIONS viii LIST OF FIGURES xi LIST OF TABLES xiv Chapter1 Introduction 1 1.1 Preface 1 1.2 Literature Review 2 1.3 Purpose 7 Chapter 2 Theory 17 2.1 Surface Wettability and Surface Modification 17 2.1.1 Surface Energy 17 2.1.2 Surface Wettability and Static Contact Angle 18 2.1.3 Contact Angle Theories 19 2.1.3.1 Young’s Equation 19 2.1.3.2 Wenzel’s Model 19 2.1.3.3 Cassie-Baxter Model 20 2.1.4 Screen Printing Technique 21 2.2 Pool Boiling 22 2.2.1 Pool Boiling Curve 22 2.2.2 Required Energy Relationship between the Contact Angle and Vapor Bubble Generation 24 2.2.3 Theoretical Model of Heterogeneous Wettability 26 Chapter 3 Experimental Methodology 34 3.1 Surface Modification 34 3.1.1 Chemicals 34 3.1.2 Equipment 34 3.1.3 Preparation of The Copper Test Piece 35 3.1.4 Preparation of the Polymer Mixture for Screen Printing 36 3.1.5 Preparation of the Heterogeneous Wettable Surfaces with Various Inclination Angle of Interlaced Line Patterns 36 3.2 Surface Analysis 37 3.2.1 Surface Wettability 37 3.2.2 Coating Thickness and Surface Roughness 37 3.2.3 Surface Morphology 37 3.3 Pool Boiling Heat Transfer Experimental System 37 3.3.1 Equipment 38 3.3.2 Experimental Procedure and Measurement 40 3.3.2.1 Experimental Setup 40 3.3.2.2 Experimental Procedure 41 3.3.2.3 Data Reduction 42 3.3.2.4 Uncertainty Analysis 43 Chapter 4 Experimental Results and Discussion 58 4.1 Effect of Various Inclined Angles of Interlaced Patterns on Pool Boiling Heat Transfer 58 4.2 Characterization Results 69 4.2.1 Surface Wettability 69 4.2.2 Coating Thickness and Surface Roughness 69 4.2.3 Surface Morphology 69 4.3 Uncertainty Analysis 73 Chapter 5 Conclusions and Future Prospects 74 5.1 Conclusions 74 5.2 Future Prospects 75 Reference 76 | |
| dc.language.iso | en | |
| dc.subject | 非均質可潤濕性表面 | zh_TW |
| dc.subject | 池沸騰 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | surface modification | en |
| dc.subject | pool boiling | en |
| dc.subject | heterogeneous wettable surface | en |
| dc.title | 斜線交錯之非均質可潤濕性表面於紅銅圓管表面對池沸騰熱傳影響之研究 | zh_TW |
| dc.title | Effect of Heterogeneous Wettable Inclined Interlace Structures on Pool Boiling Performance of Cylindrical Copper Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李達生,吳旻憲 | |
| dc.subject.keyword | 池沸騰,表面改質,非均質可潤濕性表面, | zh_TW |
| dc.subject.keyword | pool boiling,heterogeneous wettable surface,surface modification, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201802998 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 6.32 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
