Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70576
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧(Shan-hui Hsu)
dc.contributor.authorTung-Tso Hoen
dc.contributor.author何統作zh_TW
dc.date.accessioned2021-06-17T04:31:32Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citation1. Hsu SH, Ho TT, Tseng TC. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 2012;33(14):3639-50.
2. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017;9(4):53.
3. Landriscina A, Rosen J, Friedman AJ. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine. 2015;10(10):1609-19.
4. Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011; 32(29):6929-45.
5. Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19-27.
6. Liu Y, Teoh SH, Chong MS, Yeow CH, Kamm RD, Choolani M, Chan JK. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng Part A. 2013;19(7-8):893-904.
7. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res. 2009; 104(12):1410-1420.
8. Kirton JP, Xu Q. Endothelial precursors in vascular repair. Microvasc Res. 2010; 79(3):193-199.
9. Dufourcq P, Descamps B, Tojais NF, Leroux L, Oses P, Daret D, et al. Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells. 2008; 26(11):2991-3001.
10. Abedin M, Tintut Y, Demer LL. Mesenchymal stem cells and the artery wall. Circ Res. 2004; 95(7):671-676.
11. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008; 8(9):726-736.
12. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411):143-147.
13. Goerke SM, Plaha J, Hager S, Strassburg S, Torio-Padron N, Stark GB, et al. Human endothelial progenitor cells induce ERK-dependent differentiation of mesenchymal stem cells into smooth-muscle cells upon cocultivation. Tissue Eng Part A. 2012; 18(23-24):2395-2405.
14. Kawano Y, Takaue Y, Hirao A, Sato J, Abe T, Suzue T, et al. Synergy among erythropoietin, interleukin 3, stem cell factor (c-kit ligand) and interferon-gamma on early human hematopoiesis. Stem Cells. 1994; 12(5):514-520.
15. Nishi N, Ishikawa R, Inoue H, Nishikawa M, Yoneya T, Kakeda M, et al. In vitro long-term culture of human primitive hematopoietic cells supported by murine stromal cell line MS-5. Leukemia. 1997;11 Suppl 3:468-473.
16. Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res. 2013; 352(1):123-31.
17. Bhang SH, Lee S, Lee TJ, La WG, Yang HS, Cho SW, et al. Three-Dimensional Cell Grafting Enhances the Angiogenic Efficacy of Human Umbilical Vein Endothelial Cells. Tissue Eng Part A. 2012; 18(3-4):310-319.
18. Sacharidou A, Koh W, Stratman AN, Mayo AM, Fisher KE, Davis GE. Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood. 2010; 115(25):5259-5269.
19. Hsu SH, Huang GS, Lin SY, Feng F, Ho TT, Liao YC. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Eng Part A. 2012; 18(1-2):67-79.
20. Li AP, Colburn SM, Beck DJ. A simplified method for the culturing of primary adult rat and human hepatocytes as multicellular spheroids. In Vitro Cell Dev Biol. 1992;28A(9-10):673-7.
21. Hasebe Y, Okumura N, Koh T, Kazama H, Watanabe G, Seki T, Ariga T. Formation of rat hepatocyte spheroids on agarose. Hepatol Res. 2005;32(2):89-95.
22. Chen MH, Chen YJ, Liao CC, Chan YH, Lin CY, Chen RS, Young TH. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface. J Biomed Mater Res A. 2009;90(4):1066-1072.
23. Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011; 32(11):2734-2747.
24. Saleh FA, Whyte M, Genever PG. Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cell Mater. 2011; 22:242-257.
25. Lee WY, Tsai HW, Chiang JH, Hwang SM, Chen DY, Hsu LW, et al. Coreeshell cell bodies composed of human cbMSCs and HUVECs for functional vasculogenesis. Biomaterials. 2011; 32(33):8446-8455.
26. Dardik R, Livnat T, Nisgav Y, Weinberger D. Enhancement of angiogenic potential of endothelial cells by contact with retinal pigment epithelial cells in a model simulating pathological conditions. Invest Ophthalmol Vis Sci. 2010; 51(12):6188-6195.
27. Chang JC, Hsu SH, Chen DC. The promotion of chondrogenesis in adiposederived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials 2009;30(31):6265-75.
28. Dardik R, Livnat T, Nisgav Y, Weinberger D. Enhancement of angiogenic potential of endothelial cells by contact with retinal pigment epithelial cells in a model simulating pathological conditions. Invest Ophthalmol Vis Sci. 2010; 51(12):6188-6195.
29. Thanh NTK, Green LaW. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010; 5(3):213-230.
30. Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. Nano Today 2010; 5(6):553-69.
31. Bhang SH, Lee S, Lee TJ, La WG, Yang HS, Cho SW, et al. Three-dimensional cell grafting enhances the angiogenic efficacy of human umbilical vein endothelial cells. Tissue Eng Part A. 2012; 18(3-4):310-319.
32. Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011; 32(11):2734-2747.
33. aleh FA, Whyte M, Genever PG. Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cell Mater. 2011; 22:242-257.
34. Lee WY, Tsai HW, Chiang JH, Hwang SM, Chen DY, Hsu LW, et al. Coreeshell cell bodies composed of human cbMSCs and HUVECs for functional vasculogenesis. Biomaterials. 2011; 32(33):8446-8455.
35. Youssef J, Nurse AK, Freund LB, Morgan JR. Quantification of the forces driving self-assembly of three-dimensional microtissues. PNAS. 2011; 108(17):6993-6998.
36. Krieg M, et al. (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10(4):429-436.
37. Jiang T, Wang L, Lin S, Lin J, Li Y (2011) Structural evolution of multicompartment micelles self-assembled from linear ABC triblock copolymer in selective solvents. Langmuir 27(10):6440-6448.
38. Kwon SM, Alev C, Asahara T. The role of notch signaling in endothelial progenitor cell biology. Trends Cardiovasc Med. 2009; 19(5):170-173.
39. del Álamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in notch signalling. Curr Biol. 2011; 21(1):R40-47.
40. Murata A, Okuyama K, Sakano S, Kajiki M, Hirata T, Yagita H, et al. A Notch ligand, Delta-like 1 functions as an adhesion molecule for mast cells. J Immunol. 2010; 185(7):3905-3912.
41. Caolo V, Molin DG, Post MJ. Notch Regulation of Hematopoiesis, Endothelial Precursor Cells, and Blood Vessel Formation: Orchestrating the Vasculature. Stem Cells Int. 2012; 2012:805602.
42. Cordle J, Johnson S, Tay JZ, Roversi P, Wilkin MB, de Madrid BH, et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol. 2008; 15(8):849-857.
43. Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol. 2005; 170(6):983-992.
44. Dong Y, Long T, Wang C, Mirando AJ, Chen J, O'Keefe RJ, Hilton MJ. NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine. Stem Cells Transl Med. 2014;3(12):1456-1466.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70576-
dc.description.abstract間葉幹細胞(mesenchymal stem cells,MSCs)是組織工程中經常使用的細胞,文獻中指出,藉由培養基材,可以達成分離幹細胞、維持幹細胞特性等目標,可見培養基材之重要性。然而細胞培養基材在功能性上尚有很大的研究空間,在此我們利用了DNA質體 pTRE-Tight-DsRED2 (3.3 kb,~5 nm)展示了藉由細胞培養基材(hyaluronan-modified chitosan,chitosan-HA)進行3D培養,能夠達成原本無法達成的不使用轉殖劑的幹細胞基因轉殖,以及在不同基材上(chitosan和chitosan-HA)進行MSCs和血管內皮前驅細胞(endothelial progenitor cells,EPCs)共培養時,能夠藉由改變培養基材和細胞比例達成不同型態的自組裝混和細胞球,而動物實驗暗示了自組裝型態對於血管新生有極大潛力。zh_TW
dc.description.abstractMesenchymal stem cells, MSCs are the cell often used in Tissue engineering. Prior literature shows stem cells isolation and maintain the stemness can be chieved by the cell culture substrate. This illustrate the improtance of the cell culture substrate. However, the funtionilties of cell culture substrate need futher research. Here we use plsmid DNA pTRE-Tight-DsRED2 (3.3 kb, ~5 nm) and cultue stem cell spheroids on hyaluronan-modified chitosan, chitosan-HA to demonstrate a substrate mediated stem cell gene transfect without transfect reagent which been consider unlikly happend by. On the other hand, we observed different self-assembled morphologies (i.e. randomly mixed or concentric spheroids) when co-cultured MSCs and endothelial progenitor cells, EPCs by changed the initial cell ratio or replaced the substrate chitosan or chitosan-HA. In particular, the self-assembled MSC-EPC core-shell concentric spheroids show a greater angiogenic effect in vitro.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:31:32Z (GMT). No. of bitstreams: 1
ntu-107-D98549013-1.pdf: 2698197 bytes, checksum: 78fccb97150d5c990a22644c12e5f183 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents國立臺灣大學博士學位論文口試委員會審定書 I
謝誌 II
目錄 III
表目錄 VI
圖目錄 VII
摘要 VIII
Abstract IX
縮寫表 X
第一章 緒論 1
第一章 第1節 幹細胞成球 1
第一章 第2節 幹細胞基因轉殖 1
第一章 第3節 細胞共培養 2
第一章 第4節 血管修復的動物實驗 4
第二章 材料與方法 6
第二章 第1節 第一部分 基因轉殖 6
第二章 第1-1節 細胞培養 6
第二章 第1-2節 生醫材料薄膜製備 7
第二章 第1-2.1節 CS膜 7
第二章 第1-2.2節 CS-HA膜 7
第二章 第1-3節 基因轉殖 7
第二章 第1-4節 加入抑制劑 8
第二章 第2節 第二部分 細胞共培養 8
第二章 第2-1節 細胞培養 8
第二章 第2-1.1節 EPCs 8
第二章 第2-1.2節 MSCs 8
第二章 第2-2節 細胞標定 9
第二章 第2-3節 生醫材料薄膜製備 10
第二章 第2-3.1節 CS以及CS-HA膜 10
第二章 第2-3.2節 PVA膜 10
第二章 第2-4節 基材上共培養 10
第二章 第2-5節 Matrigel 體外成管試驗 11
第二章 第3節 第三部分 大鼠體內試驗 11
第二章 第3-1節 皮下血管生成 11
第二章 第3-1.1節 植入細胞製備 11
第二章 第3-1.2節 植入細胞 11
第二章 第3-1.3節 切片製備與觀察 11
第二章 第4節 統計分析 12
第三章 實驗結果 13
第三章 第1節 第一部分 基因轉殖 13
第三章 第1-1節 轉殖劑對轉殖率以及細胞存活率 13
第三章 第1-2節 基材轉殖的轉殖率以及細胞存活率 13
第三章 第1-3節 使用抑制劑的轉殖抑制率 14
第三章 第2節 第二部分 細胞共培養 14
第三章 第2-1節 細胞鑑定 14
第三章 第2-2節 基材上的存活率 14
第三章 第2-3節 共培養的結果 14
第三章 第2-4節 細胞migration 17
第三章 第2-5節 基因表現 17
第三章 第2-6節 Matrigel 體外成管 18
第三章 第3節 第三部分 大鼠體內試驗 18
第三章 第3-1節 皮下matrigel植入 18
第四章 討論 20
第五章 結論 27
第六章 未來展望 27
第七章 引用資料 29
dc.language.isozh-TW
dc.subject間葉幹細胞zh_TW
dc.subject血管內皮前驅細胞zh_TW
dc.subject基因轉殖zh_TW
dc.subject共培養zh_TW
dc.subject自組裝型態zh_TW
dc.subjectself-assembleen
dc.subjectendothelial progenitor cellsen
dc.subjectgene transfectionen
dc.subjectco-cultureen
dc.subjectMesenchymal stem cellsen
dc.title細胞培養基材對3D培養幹細胞球的影響探討zh_TW
dc.titleSubstrate-depandent modulation of 3D spheroids of mesenchymal stem cellsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee張瑞芝,戴念國,韓皓偉,黃翠薇
dc.subject.keyword間葉幹細胞,血管內皮前驅細胞,基因轉殖,共培養,自組裝型態,zh_TW
dc.subject.keywordMesenchymal stem cells,endothelial progenitor cells,gene transfection,co-culture,self-assemble,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201803007
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved