請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70562
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳小梨(Show-Li Chen) | |
dc.contributor.author | Won-Shin Yen | en |
dc.contributor.author | 顏婉欣 | zh_TW |
dc.date.accessioned | 2021-06-17T04:31:09Z | - |
dc.date.available | 2020-09-04 | |
dc.date.copyright | 2018-09-04 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-10 | |
dc.identifier.citation | Aherrahrou, Z., Schlossarek, S., Stoelting, S., Klinger, M., Geertz, B., Weinberger, F., Kessler, T., Aherrahrou, R., Moreth, K., Bekeredjian, R., et al. (2016). Knock-out of nexilin in mice leads to dilated cardiomyopathy and endomyocardial fibroelastosis. Basic Res Cardiol 111, 6.
Arber, S., Hunter, J.J., Ross, J., Jr., Hongo, M., Sansig, G., Borg, J., Perriard, J.C., Chien, K.R., and Caroni, P. (1997). MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393-403. Bahler, M., and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett 513, 107-113. Balakrishnan, B., and Jayandharan, G.R. (2014). Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther 14, 86-100. Bish, L.T., Morine, K., Sleeper, M.M., Sanmiguel, J., Wu, D., Gao, G., Wilson, J.M., and Sweeney, H.L. (2008). Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19, 1359-1368. Bosch, D.G., Boonstra, F.N., de Leeuw, N., Pfundt, R., Nillesen, W.M., de Ligt, J., Gilissen, C., Jhangiani, S., Lupski, J.R., Cremers, F.P., et al. (2016). Novel genetic causes for cerebral visual impairment. Eur J Hum Genet 24, 660-665. Bruning, J.C., Michael, M.D., Winnay, J.N., Hayashi, T., Horsch, D., Accili, D., Goodyear, L.J., and Kahn, C.R. (1998). A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2, 559-569. Chang, S.W., Tsao, Y.P., Lin, C.Y., and Chen, S.L. (2011). NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 85, 6750-6763. Chen, H.H., Chen, W.P., Yan, W.L., Huang, Y.C., Chang, S.W., Fu, W.M., Su, M.J., Yu, I.S., Tsai, T.C., Yan, Y.T., et al. (2015). NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci 128, 4196-4209. Chen, H.H., Fan, P., Chang, S.W., Tsao, Y.P., Huang, H.P., and Chen, S.L. (2017). NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 8, 21501-21515. Chen, H.H., Tsai, L.K., Liao, K.Y., Wu, T.C., Huang, Y.H., Huang, Y.C., Chang, S.W., Wang, P.Y., Tsao, Y.P., and Chen, S.L. (2018). Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. J Cachexia Sarcopenia Muscle. Chen, M.J., Shih, C.L., and Wang, K. (1993). Nebulin as an actin zipper. A two-module nebulin fragment promotes actin nucleation and stabilizes actin filaments. J Biol Chem 268, 20327-20334. Chen, P.H., Tsao, Y.P., Wang, C.C., and Chen, S.L. (2008). Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res 36, 51-66. Cheng, H., Zheng, M., Peter, A.K., Kimura, K., Li, X., Ouyang, K., Shen, T., Cui, L., Frank, D., Dalton, N.D., et al. (2011). Selective deletion of long but not short Cypher isoforms leads to late-onset dilated cardiomyopathy. Hum Mol Genet 20, 1751-1762. Cheung, C.L., Chan, B.Y., Chan, V., Ikegawa, S., Kou, I., Ngai, H., Smith, D., Luk, K.D., Huang, Q.Y., Mori, S., et al. (2009). Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Hum Mol Genet 18, 679-687. Choi, V.W., McCarty, D.M., and Samulski, R.J. (2006). Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol 80, 10346-10356. Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri, A., Falconi, M., Marmocchi, F., Rolilio, G., and Bolognesi, M. (1991). Structure solution and molecular dynamics refinement of the yeast Cu,Zn enzyme superoxide dismutase. Acta Crystallogr B 47 ( Pt 6), 918-927. Ehret, G.B., O'Connor, A.A., Weder, A., Cooper, R.S., and Chakravarti, A. (2009). Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet 17, 1650-1657. Emde, B., Heinen, A., Godecke, A., and Bottermann, K. (2014). Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur J Histochem 58, 2448. Frank, D., Kuhn, C., Katus, H.A., and Frey, N. (2006). The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 84, 446-468. Freeman, J.L., Pitcher, J.A., Li, X., Bennett, V., and Lefkowitz, R.J. (2000). alpha-Actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Lett 473, 280-284. Gaudet, D., Methot, J., Dery, S., Brisson, D., Essiembre, C., Tremblay, G., Tremblay, K., de Wal, J., Twisk, J., van den Bulk, N., et al. (2013). Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20, 361-369. Gruntman, A.M., Bish, L.T., Mueller, C., Sweeney, H.L., Flotte, T.R., and Gao, G. (2013). Gene transfer in skeletal and cardiac muscle using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14, Unit 14D 13. Hall, D.D., Dai, S., Tseng, P.Y., Malik, Z., Nguyen, M., Matt, L., Schnizler, K., Shephard, A., Mohapatra, D.P., Tsuruta, F., et al. (2013). Competition between alpha-actinin and Ca(2)(+)-calmodulin controls surface retention of the L-type Ca(2)(+) channel Ca(V)1.2. Neuron 78, 483-497. Han, C.P., Lee, M.Y., Tzeng, S.L., Yao, C.C., Wang, P.H., Cheng, Y.W., Chen, S.L., Wu, T.S., Tyan, Y.S., and Kok, L.F. (2008). Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res 27, 25. Hart, M.C., and Cooper, J.A. (1999). Vertebrate isoforms of actin capping protein beta have distinct functions In vivo. J Cell Biol 147, 1287-1298. Heckmann, M.B., Bauer, R., Jungmann, A., Winter, L., Rapti, K., Strucksberg, K.H., Clemen, C.S., Li, Z., Schroder, R., Katus, H.A., et al. (2016). AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice. Gene Ther 23, 673-679. Heineke, J., and Molkentin, J.D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7, 589-600. Hell, J.W., Westenbroek, R.E., Warner, C., Ahlijanian, M.K., Prystay, W., Gilbert, M.M., Snutch, T.P., and Catterall, W.A. (1993). Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 123, 949-962. Hoffman, E.P., Fischbeck, K.H., Brown, R.H., Johnson, M., Medori, R., Loike, J.D., Harris, J.B., Waterston, R., Brooke, M., Specht, L., et al. (1988). Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med 318, 1363-1368. Jacobson, S.G., Cideciyan, A.V., Roman, A.J., Sumaroka, A., Schwartz, S.B., Heon, E., and Hauswirth, W.W. (2015). Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 372, 1920-1926. Jin, J., Arias, E.E., Chen, J., Harper, J.W., and Walter, J.C. (2006). A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23, 709-721. Kotterman, M.A., Chalberg, T.W., and Schaffer, D.V. (2015). Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng 17, 63-89. Krupp, J.J., Vissel, B., Thomas, C.G., Heinemann, S.F., and Westbrook, G.L. (1999). Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J Neurosci 19, 1165-1178. Leonard, A.S., Bayer, K.U., Merrill, M.A., Lim, I.A., Shea, M.A., Schulman, H., and Hell, J.W. (2002). Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/calmodulin and alpha-actinin. J Biol Chem 277, 48441-48448. Mastrototaro, G., Liang, X., Li, X., Carullo, P., Piroddi, N., Tesi, C., Gu, Y., Dalton, N.D., Peterson, K.L., Poggesi, C., et al. (2015). Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovasc Res 107, 216-225. Mohapatra, B., Jimenez, S., Lin, J.H., Bowles, K.R., Coveler, K.J., Marx, J.G., Chrisco, M.A., Murphy, R.T., Lurie, P.R., Schwartz, R.J., et al. (2003). Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80, 207-215. Moncman, C.L., and Wang, K. (1999). Functional dissection of nebulette demonstrates actin binding of nebulin-like repeats and Z-line targeting of SH3 and linker domains. Cell Motil Cytoskeleton 44, 1-22. Mukai, H., Toshimori, M., Shibata, H., Takanaga, H., Kitagawa, M., Miyahara, M., Shimakawa, M., and Ono, Y. (1997). Interaction of PKN with alpha-actinin. J Biol Chem 272, 4740-4746. Otey, C.A., and Carpen, O. (2004). Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58, 104-111. Papa, I., Astier, C., Kwiatek, O., Raynaud, F., Bonnal, C., Lebart, M.C., Roustan, C., and Benyamin, Y. (1999). Alpha actinin-CapZ, an anchoring complex for thin filaments in Z-line. J Muscle Res Cell Motil 20, 187-197. Park, J.B., Kim, J.H., Kim, Y., Ha, S.H., Yoo, J.S., Du, G., Frohman, M.A., Suh, P.G., and Ryu, S.H. (2000). Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by alpha-actinin in an ADP-ribosylation factor-reversible manner. J Biol Chem 275, 21295-21301. Pashmforoush, M., Pomies, P., Peterson, K.L., Kubalak, S., Ross, J., Jr., Hefti, A., Aebi, U., Beckerle, M.C., and Chien, K.R. (2001). Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7, 591-597. Phelps, S.F., Hauser, M.A., Cole, N.M., Rafael, J.A., Hinkle, R.T., Faulkner, J.A., and Chamberlain, J.S. (1995). Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4, 1251-1258. Schafer, D.A., Gill, S.R., Cooper, J.A., Heuser, J.E., and Schroer, T.A. (1994). Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin. J Cell Biol 126, 403-412. Schafer, D.A., Hug, C., and Cooper, J.A. (1995). Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J Cell Biol 128, 61-70. Seisenberger, C., Specht, V., Welling, A., Platzer, J., Pfeifer, A., Kuhbandner, S., Striessnig, J., Klugbauer, N., Feil, R., and Hofmann, F. (2000). Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 275, 39193-39199. Shin, J.H., Bostick, B., Yue, Y., Hajjar, R., and Duan, D. (2011). SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice. J Transl Med 9, 132. Sinnegger-Brauns, M.J., Hetzenauer, A., Huber, I.G., Renstrom, E., Wietzorrek, G., Berjukov, S., Cavalli, M., Walter, D., Koschak, A., Waldschutz, R., et al. (2004). Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels. J Clin Invest 113, 1430-1439. Sjoblom, B., Salmazo, A., and Djinovic-Carugo, K. (2008). Alpha-actinin structure and regulation. Cell Mol Life Sci 65, 2688-2701. Tsai, T.C., Lee, Y.L., Hsiao, W.C., Tsao, Y.P., and Chen, S.L. (2005). NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem 280, 20000-20009. Vasileva, A., and Jessberger, R. (2005). Precise hit: adeno-associated virus in gene targeting. Nat Rev Microbiol 3, 837-847. Wachsstock, D.H., Schwartz, W.H., and Pollard, T.D. (1993). Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J 65, 205-214. Wang, K., Knipfer, M., Huang, Q.Q., van Heerden, A., Hsu, L.C., Gutierrez, G., Quian, X.L., and Stedman, H. (1996). Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. J Biol Chem 271, 4304-4314. Witt, C.C., Burkart, C., Labeit, D., McNabb, M., Wu, Y., Granzier, H., and Labeit, S. (2006). Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25, 3843-3855. Yang, J., and Xu, X. (2012). alpha-Actinin2 is required for the lateral alignment of Z discs and ventricular chamber enlargement during zebrafish cardiogenesis. FASEB J 26, 4230-4242. Zhang, J.C., Woo, Y.J., Chen, J.A., Swain, J.L., and Sweeney, H.L. (1999). Efficient transmural cardiac gene transfer by intrapericardial injection in neonatal mice. J Mol Cell Cardiol 31, 721-732. Zhang, Y., Ye, J., Chen, D., Zhao, X., Xiao, X., Tai, S., Yang, W., and Zhu, D. (2006). Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. J Transl Med 4, 53. Zhou, Q., Ruiz-Lozano, P., Martone, M.E., and Chen, J. (1999). Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 274, 19807-19813. Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J.E. (2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16, 1073-1080. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70562 | - |
dc.description.abstract | 核受體結合蛋白 (Nuclear receptor interaction protein, NRIP) 又名DCAF6或IQWD1,此蛋白質帶有七的WD-40 repeats以及一個IQ motif,且當有鈣離子的情況下,NRIP會以IQ motif與攜鈣素 (calmodulin; CaM) 結合,進而調控與肌肉功能相關之下游鈣離子信息,在本實驗室所建立之肌肉NRIP基因剃除小鼠(muscle-restricted NRIP knockout mice, cKO mice)上也看到肌肉以及運動功能異常的情況。NRIP同時為一個肌小節Z盤 (Z-disc) 蛋白,先前研究發現NRIP能以IQ motif和主要構成Z-disc的輔肌動蛋白 (α-actinin2; ACTN2) 結合,且NRIP除了影響骨骼肌外,在肌肉NRIP基因剃除小鼠 (NRIP-cKO) 也發現有心臟收缩力下降,心肌肥大 (hypertrophy) 鈣離子流動速率 (calcium transient) 下降,以及粒線體呼吸功能和型態不正常的現象,因此初步發現認為NRIP可能扮演維持心臟肌肉正常功能之角色。
首先我們發現12周之NRIP-cKO老鼠相對於正常的wild-type (WT) 老鼠有心臟收收功能下降的情況;另外我們也利用穿透式電子顯微鏡 (Transmission Electron Microscopy; TEM) 觀察其心肌肌節型態,進一步看到cKO老鼠肌節上的Z-disc變寬以及I-band變短的現象,與先前的研究結果一致;加上我們進一步在年紀較大 (22 周) 的cKO老鼠身上發現有心肌細胞 (cardiomyocyte) 變大的情形。因此,我們認為NRIP在心肌上扮演穩定Z-disc結構的角色,NRIP的缺失可能造成肌節結構的不正常以及心臟整體收縮功能下降,並引發漸進的心臟肥大 (cardiac hypertrophy). 然而,關於NRIP缺失如何影響心臟功能及型態的機轉並不清楚,因此本研究的第一個目標為探討NRIP在心肌上的分子機轉。由於NRIP能與ACTN2結合,而ACTN2是構成Z-disc 的主要蛋白,能與許多其他Z-disc交互作用及聯結纖維狀肌動蛋白 (F-actin),我們發現NRIP-cKO老鼠心臟之ACTN2與Cap-Z結合能力較差,此結果顯示NRIP對於維持ACTN2與Cap-Z結合的穩定性是重要的。除此之外我們也利用in vitro sedimentation assay,發現NRIP會影響ACTN2與F-actin的親和力。總結來說,我們的研究結果顯示NRIP在Z-disc上可能透過影響actin/ACTN2以及其他相關蛋白來調控穩定心肌結構的角色。 根據目前結果顯示NRIP的缺失會造心臟收縮功能下降,Z, I-band的不正常以及在分子機轉上降低ACTN2與Cap-Z結合的穩定性;因此在本研究的第二個部分,我們利用帶有NRIP基因之腺相關病毒(AAV)進行基因療法,欲達到治療NRIP缺失所導致的不正常現象。然而,利用心包內注射 (intrapericardial injection) 給予出生後五天老鼠 AAV的治療之後,我們在12周進行心臟超音波(Echocardiography)診斷心臟收縮功能是否改進,心肌肌節型態是否恢復以及其他相關觀察,發現在NRIP-cKO老鼠上給予AAV的基因治療無法有效改善因缺失NRIP所導致之現象,我們初步認為此結果的可能原因為AAV在心臟內的表現程度不足無法有效補足NRIP表現量所造成。 最後,除了上述所提NRIP扮演穩定肌節的功能以外,我們也探討NRIP的其他分子機轉。由於NRIP能以其IQ motif與ACTN2和CaM結合;根據其他研究指出許多同樣能和ACTN2和CaM結合的蛋白能透過鈣離子 (Ca2+) 來調控蛋白在細胞膜上的表現或離子通道的活性,因此我們想探討Ca2+對於 NRIP-ACTN2-CaM三者之間交互作用的影響。利用在293T細胞的免疫沉澱法(immunoprecipitation) 初步結果發現,NRIP-ACTN2-CaM能形成附合體,然而當Ca2+濃度增加時,NRIP會傾向與CaM結合,使得NRIP與ACTN2之間的親合力降低。除此之外,我們也發現NRIP除了透過ACTN2影響F-actin的連結 (cross-link) 以外,本身能直接或接間接與actin交互作用;此結果也暗示NRIP可能參與其他在細胞骨架或細胞膜上的分子作用機轉。 | zh_TW |
dc.description.abstract | Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) consists of 860 amino acids and encodes seven WD40 domains with one IQ motif. NRIP interacts with calmodulin (CaM) in the presence of calcium via the IQ domain. NRIP has been reported to be a Z-disc protein, and NRIP-knockout mice were found to have reduced muscle strength, and impaired regenerative capacity in skeletal muscle.
In addition, our unpublished results revealed that muscle-specific NRIP knockout mice (NRIP-cKO) displayed progressive cardiac hypertrophy along with impair contractile function and decrease of calcium transient as well as abnormal mitochondrial morphology along with reduced mitochondrial respiration efficiency. And NRIP could bind the EF hand of actinin2 (ACTN2) by its IQ motif, ACTN2 is a critical Z-disc component crossing actin filament. Taken together, all these results suggest that NRIP may play an important role in heart. In this study, we extensively investigated NRIP role in heart functions. Firstly, we found the impaired cardiac function in 12 week NRIP-cKO mice compared with WT. Ultrastructural analysis by transmission electron microscopy (TEM) further reveled the Z-disc widening and I-band reduction in cKO mice compared with WT, which are consist with the previous observations in global NRIP knock out mice. In addition, we found the enlargement of cardiomyocyte size in NRIP-cKO mice at the age of 22 weeks but not 12 weeks. According to the functional and structural abnormalities in cKO mice, we assume that NRIP might be essential for Z-disc ultrastructure supporting, loss of NRIP in heart causes ultrastructural changes and therefore leads to cell size enlargement and progressive hypertrophy. Next, we surveyed the molecular mechanism that contributes to the cardiac structural and contractile abnormalities caused by NRIP deficiency. As NRIP is the binding protein of ACTN2, we searched several ACTN2 binding partners, and found the binding affinity between ACTN2 and Cap-Z significantly reduced in NRIP-cKO mice compared with WT, which indicated that NRIP plays an important role in stabilizing the binding between ACTN2 and Cap-Z at Z-disc. Apart from NRIP role in ACTN2-Cap-Z binding stabilization, we were also interested in whether NRIP has potential to promote α-actinin–actin binding affinity. By in vitro sedimentation assay, it showed that NRIP was able to enhance the cross-link of F-actin and ACTN2. In conclusion, we demonstrated that NRIP serves as a scaffold protein which bind the EF hand of ACTN2 and stabilizes the binding between ACTN2-Cap-Z as well as ACTN2 to cross-link F-action. In cardiomyocytes, NRIP might cooperate with ACTN2 to enhance the stability or mechanical strength of the sarcomere. Considering NRIP deficiency leads to impaired cardiac function, abnormality of Z and I-band length and affects ACTN2-Cap-Z binding affinity as described above. We next delivered AAV-NRIP through intrapericardial injection in neonatal mice and attempted to rescue the phenotypes seen in NRIP-cKO mice. The mosaic distribution of NRIP protein expression could be detected at age 22 weeks after AAV injection in hearts. However, no significant recovery of cKO mice with AAV-NRIP treatment was observed compared with AAV-GFP treatment by analyzing several parameters, including cardiac function, TEM ultrastructure, cell size and ACTN2-Cap-Z binding affinity, which might be explained by low AAV infection efficiency. In the last part of this study, we searched several novel characteristics of NRIP in addition to its role in Z-disc structure integrity. Based on the previous reports, NRIP can interact with ACTN2 and CaM through its IQ motif. Other IQ containing proteins such as N-Methyl-D-aspartate receptors (NMDAR) and L-type Ca2+ channels are reported to interact with both CaM and ACTN2, in the present of Ca2+ , the interactions of CaM and ACTN2 with these protein have affected on either ion-channel activity or protein expression on cell membrane. Thus, we further investigated the interaction among NRIP, ACTN2 and CaM with or without Ca2+, the results showed that these three proteins were able to form a stable complex under normal condition, while when the Ca2+ level was raised, NRIP could bind CaM with a higher affinity than ACTN2. In addition, by immunoprecipitation assay, the evidence suggested that NRIP might directly or indirectly bind to F-actin in ACTN2-independent manner. Collectively, these results imply the potential of NRIP to regulate the cytoskeletal integrity and molecular mechanisms on cell membrane in addition to maintaining Z-disc structure stabilization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:31:09Z (GMT). No. of bitstreams: 1 ntu-107-R05445115-1.pdf: 3724758 bytes, checksum: b3b7deec69082661f1239799139c2667 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III ABSTRACT VI 目錄 IX Chapter 1 INTRODUCTION 1 1.1 Nuclear receptor interaction protein (NRIP) 1 1.1.1 NRIP, a Z-disc protein in skeletal muscle to maintain muscle function and its role in neuromuscular system 3 1.1.2 NRIP deficiency causes heart functional and structural abnormality 5 1.2 α-actinin2 (ACTN2) 7 1.2.1 ACTN2 is a principal Z‑disc component which crosslinks actin filament 7 1.2.2 ACTN2 strengthens the anchorage of F-actin to the Z-disc via an actin capping protein (Cap-Z) 8 1.2.3 Interactions of calmodulin and α-actinin with IQ domain containing proteins 9 1.3 Adeno-associated virus (AAV) gene therapy 11 1.4 Aims of the study 13 Chapter 2 MATERIALS AND METHODS 14 2.1 Muscle-specific NRIP knockout mice 14 2.2 Cell culture 15 2.3 Protein extraction and western blotting 15 2.4 Immunoprecipitation 16 2.5 Immunofluorescent staining 17 2.6 Protein purification 18 2.7 in vitro sedimentation assay 19 2.8 Production of recombinant Adeno-associated viral vectors and 19 use in in vitro and in vivo administration 19 2.8.1 Transfect 293 cells 20 2.8.2 Perform rAAV purification of fractionated cell lysates 20 2.8.3 Dialyze 21 2.8.4 Mice and AAV vectors administration 22 2.9 Echocardiography 22 2.10 Transmission electron microscopy 23 2.11 Statistical analysis 23 Chapter 3 RESULTS 24 3.1 Muscle-specific NRIP knockout mice display impaired contractile functions 24 3.2 NRIP cKO mice display the wide Z-disc and the reduction length of I-band of sarcomere 25 3.3 NRIP-cKO mice show cardiomyocytes enlargement at the age of 22 weeks 26 3.4 The binding ability of Cap-Z to ACTN2 is reduced in NRIP-cKO 28 mice hearts with no expression levels change 28 3.5 NRIP facilitates α-actinin–dependent bundling of actin filaments 29 in vitro 29 3.6 AAV-FLAG-NRIP can be successfully generated and expressed 31 in 293T cells and heart tissues of mice after 22 weeks 31 3.7 NRIP-cKO mice display impaired cardiac function but cannot be 32 improved after AAV-FLAG-NRIP treatment 32 3.8 AAV-FLAG-NRIP injection fails to rescue NRIP deficiency-caused ultrastructural changes in Z-disc, I-band, mitochondrial morphological change as well as cell size 33 3.9 The binding affinity of Cap-Z to ACTN2 cannot be restored after 35 AAV-FLAG-NRIP treatment 35 3.10 The interaction of NRIP-ACTN2 and NRIP-CaM alternate in the present of Ca2+ 36 3.11 NRIP can interact with actin 38 Chapter 4 DISCUSSIONS 41 Chapter 5 FIGURES 55 Chapter 6 REFERENCES 75 SUPPLEMENTARY INFORMATION 82 | |
dc.language.iso | en | |
dc.title | 利用腺相關病毒(AAV)進行因缺失核受體結合蛋白(NRIP)所造成心臟不正常之基因治療 | zh_TW |
dc.title | Adeno-Associated Virus (AAV) Gene Therapy for Cardiac Abnormality Caused by NRIP Depletion | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊鎧鍵(Kai-Chien Yang),陳文彬(Wen-Pin Chen) | |
dc.subject.keyword | 核受體結合蛋白,輔肌動蛋白,纖維狀肌動蛋白,Z盤,腺相關病毒, | zh_TW |
dc.subject.keyword | NRIP,ACTN2,Cap-Z,F-actin,Z-disc,AAV, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU201802956 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。