Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorLeo Nugrahaen
dc.contributor.author陳德禮zh_TW
dc.date.accessioned2021-06-17T04:30:57Z-
dc.date.available2018-08-14
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-12
dc.identifier.citation[1] L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet‐Tieulent, and A. Jemal, 'Global cancer statistics, 2012,' CA: a cancer journal for clinicians, vol. 65, no. 2, pp. 87-108, 2015.
[2] C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, 'Breast cancer statistics, 2017, racial disparity in mortality by state,' CA: a cancer journal for clinicians, vol. 67, no. 6, pp. 439-448, 2017.
[3] R.-F. Chang and C.-M. Lo, 'Computer-Aided Diagnosis for B-Mode, Elastography and Automated Breast Ultrasound,' Cham, 2014, pp. 9-15: Springer International Publishing.
[4] J.-H. Choi, B. J. Kang, J. E. Baek, H. S. Lee, and S. H. Kim, 'Application of computer-aided diagnosis in breast ultrasound interpretation: improvements in diagnostic performance according to reader experience,' Ultrasonography, vol. 37, no. 3, p. 217, 2018.
[5] L. W. Bassett, S. Apple, M. Mahoney, and C. J. D'Orsi, Breast Imaging. Elsevier - Health Sciences Division, 2010.
[6] I. Cook and C. Fuller, 'Does histopathological examination of breast reduction specimens affect patient management and clinical follow up?,' Journal of clinical pathology, vol. 57, no. 3, pp. 286-289, 2004.
[7] O. Catalano, A. Nunziata, and A. Siani, Fundamentals in oncologic ultrasound: sonographic imaging and intervention in the cancer patient. Springer Science & Business Media, 2009.
[8] S. E. Song et al., 'Classification of metastatic versus non-metastatic axillary nodes in breast cancer patients: value of cortex-hilum area ratio with ultrasound,' Journal of breast cancer, vol. 15, no. 1, pp. 65-70, 2012.
[9] W. K. Moon et al., 'Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images,' Computer methods and programs in biomedicine, vol. 146, pp. 143-150, 2017.
[10] Y. LeCun, Y. Bengio, and G. Hinton, 'Deep learning,' nature, vol. 521, no. 7553, p. 436, 2015.
[11] J.-Z. Cheng et al., 'Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans,' Scientific reports, vol. 6, p. 24454, 2016.
[12] S. Han et al., 'A deep learning framework for supporting the classification of breast lesions in ultrasound images,' Physics in Medicine & Biology, vol. 62, no. 19, p. 7714, 2017.
[13] S. Hoo-Chang et al., 'Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,' IEEE transactions on medical imaging, vol. 35, no. 5, p. 1285, 2016.
[14] I. Guyon and A. Elisseeff, 'An Introduction to Feature Extraction,' in Feature Extraction: Foundations and Applications, I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1-25.
[15] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, 'Densely connected convolutional networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, vol. 1, no. 2, p. 3.
[16] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, 'The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation,' in Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on, 2017, pp. 1175-1183: IEEE.
[17] H.-C. Shin et al., 'Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,' IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1285-1298, 2016.
[18] M.-Q. Gao et al., 'Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial− mesenchymal transition-like state in breast cancer cells in vitro,' Journal of cell science, p. jcs. 072900, 2010.
[19] O. Ronneberger, P. Fischer, and T. Brox, 'U-net: Convolutional networks for biomedical image segmentation,' in International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234-241: Springer.
[20] X. Glorot, A. Bordes, and Y. Bengio, 'Deep sparse rectifier neural networks,' in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp. 315-323.
[21] O. Juan and R. Keriven, 'Trimap segmentation for fast and user-friendly alpha matting,' in Variational, Geometric, and Level Set Methods in Computer Vision: Springer, 2005, pp. 186-197.
[22] Y. T. Lu, 'Computer-Aided Tumor Diagnosis for Automated Breast Ultrasound,' Master of Science, Graduate Institute of Networking and Multimedia, National Taiwan University, Taiwan, 2016.
[23] A. Levin, D. Lischinski, and Y. Weiss, 'A closed form solution to natural image matting,' in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006, vol. 1, pp. 61-68: IEEE.
[24] V. Gupta and S. Raman, 'Automatic trimap generation for image matting,' in Signal and Information Processing (IConSIP), International Conference on, 2016, pp. 1-5: IEEE.
[25] D. Cho, Y.-W. Tai, and I. Kweon, 'Natural image matting using deep convolutional neural networks,' in European Conference on Computer Vision, 2016, pp. 626-643: Springer.
[26] P. Lee and Y. Wu, 'Nonlocal matting,' 2011.
[27] Q. Chen, D. Li, and C.-K. Tang, 'KNN matting,' IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 9, pp. 2175-2188, 2013.
[28] L. Perez and J. Wang, 'The effectiveness of data augmentation in image classification using deep learning,' arXiv preprint arXiv:1712.04621, 2017.
[29] A. Hess, 'Exploring Feature Reuse in DenseNet Architectures,' arXiv preprint arXiv:1806.01935, 2018.
[30] S. Ioffe and C. Szegedy, 'Batch normalization: Accelerating deep network training by reducing internal covariate shift,' arXiv preprint arXiv:1502.03167, 2015.
[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 'Dropout: a simple way to prevent neural networks from overfitting,' The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
[32] M. Lin, Q. Chen, and S. Yan, 'Network in network,' arXiv preprint arXiv:1312.4400, 2013.
[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 'Gradient-based learning applied to document recognition,' Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[34] D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014.
[35] M. H. Yap et al., 'Automated breast ultrasound lesions detection using convolutional neural networks,' IEEE journal of biomedical and health informatics, 2017.
[36] M. D. Zeiler, 'ADADELTA: an adaptive learning rate method,' arXiv preprint arXiv:1212.5701, 2012.
[37] J. Duchi, E. Hazan, and Y. Singer, 'Adaptive subgradient methods for online learning and stochastic optimization,' Journal of Machine Learning Research, vol. 12, no. Jul, pp. 2121-2159, 2011.
[38] B. Kayalibay, G. Jensen, and P. van der Smagt, 'CNN-based segmentation of medical imaging data,' arXiv preprint arXiv:1701.03056, 2017.
[39] P. Refaeilzadeh, L. Tang, and H. Liu, 'Cross-validation,' in Encyclopedia of database systems: Springer, 2009, pp. 532-538.
[40] R. Kohavi, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' in Ijcai, 1995, vol. 14, no. 2, pp. 1137-1145: Montreal, Canada.
[41] G. Forman and M. Scholz, 'Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement,' ACM SIGKDD Explorations Newsletter, vol. 12, no. 1, pp. 49-57, 2010.
[42] P. M. Cheng and H. S. Malhi, 'Transfer learning with convolutional neural networks for classification of abdominal ultrasound images,' Journal of digital imaging, vol. 30, no. 2, pp. 234-243, 2017.
[43] S. Koscielny et al., 'Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination,' British journal of cancer, vol. 49, no. 6, p. 709, 1984.
[44] N. Xu, B. Price, S. Cohen, and T. Huang, 'Deep image matting,' in Computer Vision and Pattern Recognition (CVPR), 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70555-
dc.description.abstract乳癌是最常被診斷出來的癌症,同時也是女性的第二大死因(繼肺癌之後)。儘管乳癌的死亡率很高,患有乳癌的患者卻可以透過早期診斷與適當的治療達到康復。然而,沒有接受治療的話乳癌細胞則可能透過淋巴腺或血管擴散到並侵入其他的器官,成為轉移性乳癌。因此,本文提出以深度卷積類神經網路為基礎,並藉由透過腫瘤切割決定腫瘤區域以及利用影像消光法所取得不同厚度的腫瘤周圍組織影像,開發電腦輔助系統進行轉移性乳癌的預測。本研究取了6種不同像素(5、10、15、20、25、到30)提取腫瘤周圍組織的影像進行系統訓練,其結果發現由腫瘤以及厚度15像素的周圍組織取得特徵進行訓練與測試系統,可以達到最佳的表現,其準確率為84.8%、靈敏度為88.8%、專一度為81.3%、以及ROC的曲線面積為0.926。此外,厚度為10像素的結果也不遜色,準確度達84.1%、靈敏度為83.2%、專一度為84.8%、曲線下面積為0.906,因此將來也可納入參考。zh_TW
dc.description.abstractBreast cancer is the most commonly diagnosed cancer and is the second leading cause of death among women after lung cancer. Patients who suffer from breast cancer can still recuperate with early diagnosis and proper treatment, despite the fact that breast cancer possesses a high mortality rate. If untreated, breast cancer can surreptitiously spread and invade other organs by transporting its cells via nearby hematogeneous or lymphatic routes. This type of breast cancer is classified as metastatic breast cancer. Whereas, the non-metastatic cancer does not possess this ability. This thesis presents a breast cancer classification between the metastasis and non-metastasis using the densely connected convolutional neural network (DenseNet). Several studies have also successfully revealed the presence of suspicious tissue surrounding the tumor region (peritumor). Inspired by a previous study that utilized image matting to obtain the peritumor from the trimap, the peritumor can further be extracted at different pixel thicknesses by adjusting the unknown region thickness of the trimap. Thus, this study trained the neural network using peritumor images (instead of the tumor only) at different pixel thicknesses: 5, 10, 15, 20, 25, and 30 pixels. This study finds that the peritumor 15 pixels achieved the best performance with an accuracy of 84.8%, a sensitivity of 88.8%, a specificity of 81.3%, and an area under the curve (AUC) of receiver operating characteristic (ROC) of 0.926. In addition, based on the results, the peritumor 10 pixels may not be too farfetched from being considered for future studies as it scored an accuracy of 84.1%, a sensitivity of 83.2%, a specificity of 84.8%, and an AUC score of 0.906.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:30:57Z (GMT). No. of bitstreams: 1
ntu-107-R05922151-1.pdf: 1979731 bytes, checksum: 173b233fdf60fec70c02480f8486c03d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Materials 5
2.1. Patient Data 5
2.2. Ultrasound Scanner Manufacturers Data 5
Chapter 3 Methods 7
3.1. Tumor Segmentation 8
3.2. Automatic Trimap 10
3.3. Peritumor Extraction 12
3.4. Image Augmentation 16
3.5. Metastasis Prediction 17
3.5.1. DenseNet 17
3.5.2. Dense Block and Transition Block 20
3.5.3. Hyper Parameter Settings 22
Chapter 4 Results and Discussion 24
4.1. Experimental Setup 24
4.2. Results 24
4.3. Discussion 31
Chapter 5 Conclusion and Future Works 34
References 35
dc.language.isoen
dc.subject深度卷積類神經網路zh_TW
dc.subject影像消光法zh_TW
dc.subject腫瘤切割zh_TW
dc.subject癌症轉移zh_TW
dc.subject三分圖zh_TW
dc.subjectmetastasisen
dc.subjectperitumoren
dc.subjecttrimapen
dc.subjectimage-mattingen
dc.subjectimage-segmentationen
dc.subjectdeep neural networken
dc.subjectdenseneten
dc.title使用深度卷積類神經網路於乳房超音波癌症轉移預測zh_TW
dc.titleMetastasis Cancer Prediction of Breast Ultrasound Using Deep Convolutional Neural Networken
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅崇銘(Chung-Ming Lo),陳啟禎(Chii-Jen Chen)
dc.subject.keyword癌症轉移,深度卷積類神經網路,三分圖,影像消光法,腫瘤切割,zh_TW
dc.subject.keywordmetastasis,peritumor,trimap,image-matting,image-segmentation,deep neural network,densenet,en
dc.relation.page38
dc.identifier.doi10.6342/NTU201803073
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved