Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙鍵哲(Jen-Jer Jaw)
dc.contributor.authorYa-Po Changen
dc.contributor.author張雅博zh_TW
dc.date.accessioned2021-06-17T04:30:54Z-
dc.date.available2020-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-12
dc.identifier.citationAgrafiotis, P., and Georgopoulos, A., 2015. Camera constant in the case of two media photogrammetry. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5):1-6.
Alpers, W., and Hennings, I., 1984. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research: Oceans, 89(C6), 10529-10546.
Blondel, P., 2000. Automatic mine detection by textural analysis of COTS sidescan sonar imagery. International Journal of Remote Sensing, 21(16), 3115-3128.
Boyle, S. A., Kennedy, C. M., Torres, J., Colman, K., Perez-Estigarribia, P. E., and Noé, U., 2014. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One, 9(1), e86908.
De Loor, G. P., and Van Hulten, H. B., 1978. Microwave measurements over the North Sea. Boundary-Layer Meteorology, 13(1-4), 119-131.
Dekker, A.G., Phinn, S.R., Anstee, J., Bissett, P., Brando, V.E., Casey, B., Fearns, P., Hedley, J., Klonowski, W., Lee, Z.P. and Lynch, M., 2011. Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography: Methods, 9(9): 396-425.
Glassner, A. S., 1989. An Introduction to Ray Tracing: Surface Physics for Ray Tracing, New York: Harcourt Brace Jovanovich Publishers, 137-141.
Guzinski, R., Spondylis, E., Michalis, M., Tusa, S., Brancato, G., Minno, L. and Hansen, L.B., 2016. Exploring the Utility of Bathymetry Maps Derived With Multispectral Satellite Observations in the Field of Underwater Archaeology. Open Archaeology, 2(1): 243–263.
Hennings, I., 1998, An historical overview of radar imagery of sea bottom topography, International Journal of Remote Sensing, 19(7): 1447-1454.
Hughes Clarke, J.E., Mayer, L.A., and Wells D., 1996, Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Marine Geophysical Researches, 18(6), 607-629.
Kotowski, R., 1988. Phototriangulation in multi-media photogrammetry. Int. Arch. Photogramm. Remote Sens, 27, pp.324-334.
Lee, G. F., Jones-Lee, A., and Rast, W., 1995. Secci Depth as a Water Quality Parameter. Report of G. Fred Lee & Associates, El Macero, CA.
Lee, K. C., and Jaw, J. J., 2017. Quality and Effectiveness of Geometric Approach Solving Water Surface and Underwater Object Points. In 38th Asian Conference on Remote Sensing (ACRS2017), New Delhi, India.
Lee, K. C., and Jaw, J. J., 2018. Water Surface Determination through Photogrammetric Intersection Employing Control Information, International Symposium on Remote Sensing(ISRS2018), Pyeongchang, Korea.
Li, R., Li, H., Zou, W., Smith, R. G., and Curran, T. A., 1997. Quantitative photogrammetric analysis of digital underwater video imagery. IEEE Journal of Oceanic Engineering, 22(2), 364-375.
Lucido, L., Opderbecke, J., Rigaud, V., Deriche, R., and Zhang, Z., 1996. A terrain referenced underwater positioning using sonar bathymetric profiles and multiscale analysis. In: OCEANS'96. MTS/IEEE. Prospects for the 21st Century. Conference Proceedings, Vol. 1, pp.417-421.
Maas, H. G., 2015. On the accuracy potential in underwater/multimedia photogrammetry, Sensors, 15(8):18140-18152.
Maas, H.-G., 1995. New developments in multimedia photogrammetry, Optical 3-D Measurement Techniques III, Wichmann Verlag, Karlsruhe.
Marcus, W. A., Legleiter, C. J., Aspinall, R. J., Boardman, J. W., and Crabtree, R. L., 2003. High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams. Geomorphology, 55(1-4), 363-380.
Mulsow, C., 2010. A Flexible Multi-media Bundle Approach, International Archives of Photogrammetry and Remote Sensing, ISPRS 2010 Congress, Vol. XXXVIII, Part 5, Newcastle upon Tyne, UK, pp. 472-477.
Murase, T., Tanaka, M., Tani, T., Miyashita, Y., Ohkawa, N., Ishiguro, S., Suzuki, Y., Kayanne, H., and Yamano, H., 2008. A photogrammetric correction procedure for light refraction effects at a two-medium boundary. Photogrammetric Engineering & Remote Sensing, 74(9), 1129-1136.
Nagasubramanian, V., Radhadevi, P. V., Ramachandran, R., and Krishnan, R., 2008. 3D Reconstrution with Rational Function Model. Journal of the Indian Society of Remote Sensing, 36(1), 27-35.
Navulur K., 2006. Multispectral Image Analysis Using the Object-Oriented Paradigm, New York, Taylor and Francis.
Okamoto, A., and Höhle, J., 1972. Allgemeines analytisches Orientierungsverfahren in der Zwei- und Mehrmedien-Photogrammetrie und seine Erprobung. Bildmessung und Luftbildwesen 2- 3/1972.
Pereiraa, M. D. C., and Caetanoa, M., 2005, June. Use of very high spatial resolution satellite imagery for thematic applications: a review. In Proceedings of the 31 International Symposium on Remote Sensing of Environment, pp. 20-24.
Rinner, K., 1948. Abbildungsgeste und Orientierungsaufgaben in der Zweimedienphotogrammetrie, Österreichischen Zeitschrift für Vermessungswesen, Sonderheft 5.
Roberts, A. C. B., 1999. Shallow water bathymetry using integrated airborne multi-spectral remote sensing. International Journal of Remote Sensing, 20(3):497-510.
Shih, P.T.Y., Chen, Y. H., and Chen, J. C, 2014. Historic Shipwreck Study in Dongsha Atoll with Bathymetric LiDAR, Archaeological Prospection, 21(2), 139-146.
Syed, S., Dare, P., and Jones, S., 2005. Automatic classification of land cover features with high resolution imagery and lidar data: an object-oriented approach. In Proceedings of SSC2005 spatial intelligence, innovation and praxis: the national biennial conference of the spatial sciences institute (pp. 512-522). Melbourne: Melbourne: Spatial Science Institute.
Tao, C. V., and Hu, Y., 2001. A comprehensive study of the rational function model for photogrammetric processing. Photogrammetric engineering and remote sensing, 67(12), 1347-1358.
Wang, C. K., and W. D. Philpot, 2007. Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sensing of Environment, 106(1): 123-135.
Whitcomb, L. L., 2000. Underwater robotics: Out of the research laboratory and into the field. In Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference, Vol. 1, pp. 709-716.
Wynn, R.B., Huvenne, V.A., Le Bas, T.P., Murton, B.J., Connelly, D.P., Bett, B.J., Ruhl, H.A., Morris, K.J., Peakall, J., Parsons, D.R. and Sumner, E.J., 2014. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, pp.451-468.
Yang, J., Zhang, J., and Meng, J., 2010. Underwater topography detection of Taiwan Shoal with SAR images. Chinese journal of oceanology and limnology, 28(3), 636-642.
Yang, X., 2000. Accuracy of rational function approximation in photogrammetry. In ASPRS annual conference, 22-26.
Zaar, K., 1948. Zweimedienphotogrammetrie, Österreichische Zeitschrift fð¹r Vermessungswesen., Sonderheft 4.
史天元、薛憲文、蕭輔導、陳雅信、徐佳筠、陳杰宗及陳佳勳,2012。澎湖與東沙環礁測深光達作業探討,航測及遙測學刊,16(3), 151-166。
周君芸,2009。結合異質衛星影像幾何模式進行三維定位,國立臺灣大學土木工程究所碩士論文。
東沙環礁,2011。福衛二號影像精選,國家實驗研究院國家太空中心。URL: https://www.nspo.narl.org.tw/Upload/WImage/000008/20110812_01_D.jpg (擷取日期:2018/06/30)
邱庭萱,2016。以攝影測量進行水位面及水下物點坐標解算,臺灣大學土木工程學研究所碩士論文。
洪可芹,2014。以透水攝影測量獲取河川底床地形,國立成功大學測量及空間資訊研究所碩士論文。
洪欣宇,2017,利用高解析衛星立體像對產製近岸水底地形,國立中央大學土木工程學系研究所碩士論文。
國立中央大學太空及遙測研究中心及國立交通大學土木工程學系,2016。104年度東海與南海島礁資料蒐集及建置工作期末報告。內政部委託,未出版。
黃聖日、趙鍵哲,2014,自空氣往水中之攝影測量前方交會定位分析,第三十三屆測量及空間資訊研討會論文集,國立臺灣大學土木工程學研究所,pp.1111-1122。
劉建良、陳良健、王成機及徐偉城,2016。應用衛星影像測繪南海島礁,航測及遙測學刊,20(1): 43-60。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70553-
dc.description.abstract現今衛星影像多利用有理函數模式進行物像對應,然而,當衛星攝影取像對象為水下可視場景時,成像光線會受到折射效應而產生偏移,此時衛星影像帶有的有理函數係數並無法正確描述雙介質的物像對應關係。面對這樣雙介質的攝影任務,本研究提出一調變方式,在有理函數模式下模擬出成像路徑,並考慮折射效應同時求解水位面及水下物點三維坐標,建構帶有約制的廣義最小二乘平差模式進行解算。幾何本質上,受折射影響的成像路徑,在水位面為完全未知的解算系統下,水下折射向量隨水位面的迭代解算位置調變,水位面及水下物點之定位具很大的解算可接受範圍,無法獲致品質良好的水下物點及水位面的定位成效。本文除揭櫫此物像對應特質之外,並探討倘有額外物空間之觀測值(如:水位面、高程控制點、全控點及水深等),其如何助益於水位面及水下物點的定位解算。除此之外,像點量測精度及聯合多點解算之效益也一併納入考量。同時,也探討當異軌衛星影像帶有各自的水位面時,如何在前述模式下完成水位面及水下物點定位及分析其品質。實驗資料部分,則以模擬資料與實際資料驗證所提模式之適用性並完成成果之定性及定量分析。zh_TW
dc.description.abstractNowadays, most satellite imagery vendors offer rational polynomial coefficients (RPCs) to users for processing geometric information. Although known RPCs in rational function model (RFM) would give explicit object-to-image correspondence, the physical meaning of the parameters is hard to be interpreted. Especially, when faced with underwater object points, the object-to-image correspondence cannot be directly realized by these RPCs due to the refraction effect. To cope with this situation, this study proposes an alternative way in the imaging rays under RFM and refraction effect to determine both the water surface and underwater object points. A generalized least-squares adjustment with constraints is developed to well handle functional and stochastic models. To its essence provided that the water surface is totally unknown, the refraction vectors under the water varying with estimated water surface through each iteration results in a weak geometry and leads to unstable solutions. In addition to revealing the characteristics of aforementioned object-to-image correspondence, this study explores how the underwater object point and water surface determination would benefit from the prior observations of water surface, vertical control point, full control point, and even water depth. The benefits of increasing the accuracy of measured image points and using multiple points are also investigated in this study. Moreover, the situation of having different water surfaces with across-track image acquisition is analyzed together with the estimation quality on water surfaces and underwater object points. In experiment part, this study uses not only simulation data but also real satellite imagery to verify the feasibility of the proposed model.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:30:54Z (GMT). No. of bitstreams: 1
ntu-107-R05521117-1.pdf: 4984805 bytes, checksum: 298d1ade10f856c6aee6fb7d91d2989a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法與流程 4
1.4 論文架構 5
第二章 研究背景 6
2.1 高解析度衛星影像 6
2.2 有理函數模式(Rational Function Model, RFM) 8
2.3 折射效應 9
第三章 研究方法 10
3.1 自空氣往水中攝影之有理函數模式 11
3.1.1 逆有理函數係數(Reverse RPC) 11
3.1.2 結合折射效應之有理函數模式 12
3.2 帶有約制的廣義最小二乘平差模式 14
3.3 解算系統分析 16
3.4 品質評估 17
第四章 模擬資料及實際資料成果分析及討論 18
4.1 模擬資料建置 19
4.2 自空氣往水中攝影之有理函數模式之可行性 22
4.3 幾何特性分析 23
4.3.1 條件數(Condition Number) 23
4.3.2 弱化的交會幾何 25
4.3.3 GSD vs.穿刺點的位移 25
4.3.4 影響因子探討 26
4.4 不同約制對於解算品質影響 29
4.4.1 水位面先驗資訊對於解算品質分析 30
4.4.2 平面控制點(平控點)先驗資訊對於解算品質分析 32
4.4.3 高程控制點(高控點)先驗資訊對於解算品質分析 33
4.4.4 全控點先驗資訊對於解算品質分析 36
4.4.5 水深先驗資訊對於解算品質分析 39
4.4.6 不同約制之效果討論 42
4.5 聯合多點解算對於水位面之解算品質分析 43
4.6 不同像點量測誤差對於解算品質分析 45
4.7 實際衛星影像立體像對測試 53
4.7.1 實際測試影像資料 53
4.7.2 參考資料—空載測深光達資料 56
4.7.3 衛星立體像對水位面及水下物點解算成果 57
4.7.3.1 水位面完全已知時水下物點定位成果與光達資料之比對 58
4.7.3.2 實驗一 水位面約制 59
4.7.3.3 實驗二 高程控制點約制 61
4.7.3.4 實驗三 全控點約制 63
4.7.3.5 實驗四 水深約制 65
4.7.3.6 實驗五 以最小二乘匹配法提升水下物點之像點量測精度初4.7.3.6 探 67
第五章 結論與建議 73
5.1 結論 73
5.2 建議 75
參考文獻 77
附錄 81
dc.language.isozh-TW
dc.subject水下物點zh_TW
dc.subject有理函數模式zh_TW
dc.subject折射效應zh_TW
dc.subject水位面zh_TW
dc.subject約制zh_TW
dc.subjectUnderwater object pointsen
dc.subjectConstraintsen
dc.subjectRational function modelen
dc.subjectRefraction effecten
dc.subjectWater surfaceen
dc.title利用衛星影像以有理函數物像對應同時求解水位面及水下物點三維坐標zh_TW
dc.titleSimultaneously Determining Water Surface and Underwater Object Points based on Rational Functional Model by Using Satellite Imagesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱式鴻(Shih-Hong Chio),蔡展榮(Jaan-Rong Tsay)
dc.subject.keyword有理函數模式,折射效應,水下物點,水位面,約制,zh_TW
dc.subject.keywordRational function model,Refraction effect,Underwater object points,Water surface,Constraints,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201803081
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved