Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorTing-Chun Chenen
dc.contributor.author陳亭均zh_TW
dc.date.accessioned2021-06-17T04:30:53Z-
dc.date.available2023-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-11
dc.identifier.citation1 Sprouffske, K., Merlo, L. M., Gerrish, P. J., Maley, C. C. & Sniegowski, P. D. Cancer in light of experimental evolution. Curr Biol 22, R762-771, doi:10.1016/j.cub.2012.06.065 (2012).
2 Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109, 1595-1600, doi:10.1073/pnas.1115323109 (2012).
3 King, L. & Butler, G. Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet 34, 183-191 (1998).
4 O'Conallain, C., Doolin, M. T., Taggart, C., Thornton, F. & Butler, G. Regulated nuclear localisation of the yeast transcription factor Ace2p controls expression of chitinase (CTS1) in Saccharomyces cerevisiae. Mol Gen Genet 262, 275-282 (1999).
5 Oud, B. et al. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110, E4223-4231, doi:10.1073/pnas.1305949110 (2013).
6 Voth, W. P., Olsen, A. E., Sbia, M., Freedman, K. H. & Stillman, D. J. ACE2, CBK1, and BUD4 in budding and cell separation. Eukaryot Cell 4, 1018-1028, doi:10.1128/EC.4.6.1018-1028.2005 (2005).
7 Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D. & Travisano, M. Origins of multicellular evolvability in snowflake yeast. Nat Commun 6, 6102, doi:10.1038/ncomms7102 (2015).
8 Ratcliff, W. C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat Commun 4, 2742, doi:10.1038/ncomms3742 (2013).
9 Chu, Y. W. et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360, doi:10.1165/ajrcmb.17.3.2837 (1997).
10 Chen, J. J. et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61, 5223-5230 (2001).
11 Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat Rev Cancer 13, 727-738, doi:10.1038/nrc3597 (2013).
12 Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23-28 (1976).
13 Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc Natl Acad Sci U S A 103, 13474-13479, doi:10.1073/pnas.0606053103 (2006).
14 Vincent, T. L. & Gatenby, R. A. An evolutionary model for initiation, promotion, and progression in carcinogenesis. Int J Oncol 32, 729-737 (2008).
15 Schmitt, M. W., Prindle, M. J. & Loeb, L. A. Implications of genetic heterogeneity in cancer. Ann N Y Acad Sci 1267, 110-116, doi:10.1111/j.1749-6632.2012.06590.x (2012).
16 Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338-345, doi:10.1038/nature12625 (2013).
17 Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805, 105-117, doi:10.1016/j.bbcan.2009.11.002 (2010).
18 Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822-829, doi:10.1016/j.cell.2009.08.017 (2009).
19 Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287-298 (1997).
20 Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 (1999).
21 Lathia, J. D. & Liu, H. Overview of Cancer Stem Cells and Stemness for Community Oncologists. Target Oncol 12, 387-399, doi:10.1007/s11523-017-0508-3 (2017).
22 Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111, doi:10.1038/35102167 (2001).
23 Heppner, G. H. & Miller, B. E. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev 2, 5-23 (1983).
24 Wang, W. et al. Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts. PLoS One 9, e84654, doi:10.1371/journal.pone.0084654 (2014).
25 Clarke, M. F. et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66, 9339-9344, doi:10.1158/0008-5472.CAN-06-3126 (2006).
26 Mraz, M. et al. Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin alpha-4-beta-1 (VLA-4) with natalizumab can overcome this resistance. Br J Haematol 155, 53-64, doi:10.1111/j.1365-2141.2011.08794.x (2011).
27 Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730-737 (1997).
28 Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821-5828 (2003).
29 Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988, doi:10.1073/pnas.0530291100 (2003).
30 O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110, doi:10.1038/nature05372 (2007).
31 Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res 67, 1030-1037, doi:10.1158/0008-5472.CAN-06-2030 (2007).
32 Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68, 4311-4320, doi:10.1158/0008-5472.CAN-08-0364 (2008).
33 Matsui, W. et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68, 190-197, doi:10.1158/0008-5472.CAN-07-3096 (2008).
34 Dragu, D. L., Necula, L. G., Bleotu, C., Diaconu, C. C. & Chivu-Economescu, M. Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells 7, 1185-1201, doi:10.4252/wjsc.v7.i9.1185 (2015).
35 Haskins, W. E. et al. Insights on neoplastic stem cells from gel-based proteomics of childhood germ cell tumors. Pediatr Blood Cancer 58, 722-728, doi:10.1002/pbc.23282 (2012).
36 Kim, Y. S., Kaidina, A. M., Chiang, J. H., Yarygin, K. N. & Lupatov, A. Y. [Molecular markers of cancer stem cells verified in vivo]. Biomed Khim 62, 228-238, doi:10.18097/PBMC20166203228 (2016).
37 Fulawka, L., Donizy, P. & Halon, A. Cancer stem cells--the current status of an old concept: literature review and clinical approaches. Biol Res 47, 66, doi:10.1186/0717-6287-47-66 (2014).
38 Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593-598, doi:10.1038/nature07567 (2008).
39 Nicolis, S. K. Cancer stem cells and 'stemness' genes in neuro-oncology. Neurobiol Dis 25, 217-229, doi:10.1016/j.nbd.2006.08.022 (2007).
40 Pastrana, E., Silva-Vargas, V. & Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486-498, doi:10.1016/j.stem.2011.04.007 (2011).
41 Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137, 433-457, doi:10.1002/cne.901370404 (1969).
42 Rovira, M. et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci U S A 107, 75-80, doi:10.1073/pnas.0912589107 (2010).
43 Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65, 5506-5511, doi:10.1158/0008-5472.CAN-05-0626 (2005).
44 Hwang, W. L. et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 16, 268-280, doi:10.1038/ncb2910 (2014).
45 Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115, doi:10.1038/nature05384 (2007).
46 Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389-402, doi:10.1016/j.stem.2007.08.001 (2007).
47 Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396-401, doi:10.1038/nature03128 (2004).
48 Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760, doi:10.1038/nature05236 (2006).
49 Qureshi-Baig, K. et al. What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue. PLoS One 11, e0146052, doi:10.1371/journal.pone.0146052 (2016).
50 Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068-1074, doi:10.1038/nature04956 (2006).
51 Yamashita, Y. M., Yuan, H., Cheng, J. & Hunt, A. J. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2, a001313, doi:10.1101/cshperspect.a001313 (2010).
52 Li, L. & Xie, T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21, 605-631, doi:10.1146/annurev.cellbio.21.012704.131525 (2005).
53 Gomez-Lopez, S., Lerner, R. G. & Petritsch, C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci 71, 575-597, doi:10.1007/s00018-013-1386-1 (2014).
54 Mukherjee, S., Kong, J. & Brat, D. J. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 24, 405-416, doi:10.1089/scd.2014.0442 (2015).
55 Lathia, J. D. et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2, e200, doi:10.1038/cddis.2011.80 (2011).
56 Bu, P., Chen, K. Y., Lipkin, S. M. & Shen, X. Asymmetric division: a marker for cancer stem cells in early stage tumors? Oncotarget 4, 950-951, doi:10.18632/oncotarget.1029 (2013).
57 Morin, X. & Bellaiche, Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21, 102-119, doi:10.1016/j.devcel.2011.06.012 (2011).
58 di Pietro, F., Echard, A. & Morin, X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 17, 1106-1130, doi:10.15252/embr.201642292 (2016).
59 Segalen, M. & Bellaiche, Y. Cell division orientation and planar cell polarity pathways. Semin Cell Dev Biol 20, 972-977, doi:10.1016/j.semcdb.2009.03.018 (2009).
60 Humbert, P. O. & Godde, N. J. Mitotic spindle orientation: semaphorin-plexin signaling flags the way. Dev Cell 33, 243-244, doi:10.1016/j.devcel.2015.04.012 (2015).
61 Xia, J. et al. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair. Dev Cell 33, 299-313, doi:10.1016/j.devcel.2015.02.001 (2015).
62 Habib, S. J. et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339, 1445-1448, doi:10.1126/science.1231077 (2013).
63 Toyoshima, F. & Nishida, E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 26, 1487-1498, doi:10.1038/sj.emboj.7601599 (2007).
64 Segalen, M. et al. The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev Cell 19, 740-752, doi:10.1016/j.devcel.2010.10.004 (2010).
65 Ambady, S. et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol 54, 1743-1754, doi:10.1387/ijdb.103192sa (2010).
66 Bhattacharya, B. et al. Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev Biol 5, 22, doi:10.1186/1471-213X-5-22 (2005).
67 Han, S. M. et al. Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med 46, e101, doi:10.1038/emm.2014.28 (2014).
68 Hirsch, D. et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35, 849-858, doi:10.1093/carcin/bgt377 (2014).
69 Su, S. et al. Lgr5 Methylation in Cancer Stem Cell Differentiation and Prognosis-Prediction in Colorectal Cancer. PLoS One 10, e0143513, doi:10.1371/journal.pone.0143513 (2015).
70 Firestone, A. J. et al. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484, 125-129, doi:10.1038/nature10936 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70552-
dc.description.abstract生命演化的歷史中,幹性(stemness)的出現是最顯著最突破的轉淚點。而演化的探討,除了利用演化譜系進行基因體學或基因篩選的方法外,許多科學家也嘗試利用實驗演化學(experimental evolution)進行研究。此外,實驗演化學上,科學家也成功地將單細胞酵母菌演化出多細胞狀態與簡單的細胞分工。根據這兩個理由,加上癌細胞基因體不穩定的特性,我們想見也能在一定可行時間內,在實驗室中利用癌細胞,將其演化出具有幹性的狀態。我們選擇人類大腸癌細胞株HCT116作為演化之研究模型,並透過球形成試驗(sphere-forming assay)作為篩選壓力。由球形成試驗中,得到具有較高幹性的細胞,我們稱之為來自球體的癌幹細胞(SDCSCs),並將其養回一般培養環境中,而這樣的細胞稱為來自球體的貼盤癌細胞(SDACs)。首先,我們發現幹細胞標記Nanog, Oct4 和Lgr5基因,在第一代來自球體的癌幹細胞中,表現量有顯著上升的趨勢。相反的,在來自球體的貼盤癌細胞中,三個幹細胞基因表現量會隨著培養時間而逐漸下降。此外,每代篩選中,幹細胞標記Nanog、Oct4、Lgr5基因表現量在來自球體的癌幹細胞,均有顯著上升。由此可證明,我們系統的可行性。經過八次篩選後,我們發現相較於前期的癌細胞株,具有較高形成球態的能力。我們目前正在利用轉錄體定序(RNA-Seq)的方法,全面性探測我們演化出的細胞株中,幹性基因表達的差異。另一方面,我們利用顯微縮時影像分析,建立小鼠胚胎幹細胞不對稱分裂(asymmetric cell division)中紡錘體方向調控(spindle orientation)的平台。在細胞外,使用磁珠給予細胞局部性Wnt3a訊號,建立促使細胞進行不對稱分裂的微環境。我們證實局部性的Wnt3a訊號可調控細胞分裂方向。此外,在我們平台中,動力蛋白(dynein)抑制劑(Ciliobrevin D)會降低Wnt3a訊號調控細胞分裂的能力。由此可知,Wnt3a訊號可能透過動力蛋白來調控紡錘體方向,進而促使細胞進行不對稱分裂。zh_TW
dc.description.abstractIn the history of life, the appearance of stemness is one of the most remarkable and transformative advances. Experimental evolution approaches have been used to successfully evolve multicellularity in the unicellular budding yeast, Saccharomyces cerevisiae. We reason, given the genome instability of cancer, stemness can also arise from in vitro cancer evolution in the laboratory within a reasonable timescale. We approached the question with a colorectal cancer cell line, HCT116, and used sphere forming as the selective pressure. Sphere-derived cancer stem cells (SDCSCs) were repeatedly isolated and then re-plated onto a regular dish as adherent cells (sphere-derived adherent cells, or SDACs). We first confirmed that the level of canonical stemness markers, Nanog, Oct4, and Lgr5, were elevated in first-generation SDCSCs and were gradually down to the original level in SDACs from day 0 to day 14. Nanog, Oct4, and Lgr5 were up-regulated in SDCSCs in every generation, further confirming the reliability of our assay. We found that sphere-forming capability is higher after 8 generations of selection. We are currently using RNA-seq to probe potential global difference in the expression of stemness genes in our evolved cancer clone. In addition, we established a platform to analyze spindle orientation in cell division with mouse embryonic stem cells. We built a microenvironment that promoted asymmetric cell division with localized Wnt3a beads and validated that localized Wnt3a signals can indeed orient cell division. Furthermore, dynein inhibitor, Ciliobrevin D, decreased Wnt3a’s ability to orient spindles on our platform, suggesting that dynein may participate in the Wnt3a-mediated pathway in asymmetric cell division.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:30:53Z (GMT). No. of bitstreams: 1
ntu-107-R04b43016-1.pdf: 1663033 bytes, checksum: ba8e115c5d0f72ff1f8b1075a585916c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
中文摘要 III
Abstract V
List of Figures IX
Chapter 1. Introduction 1
1-1. Overview of evolution 1
1-1-1. Experimental evolution 1
1-1-2. Cancer Evolution 2
1-1-3. Stemness 3
1-1-4. Cancer stem cell 4
1-1-5. Sphere-forming assay 5
1-2. Cell division 6
1-2-1. Symmetric and asymmetric cell division 6
1-2-2. Asymmetric cell division in disease 7
1-2-3. Spindle orientation 7
1-3. The thesis organization 9
1-3-1. Experimentally evolve stemness in cancer 9
1-3-2. Establish a platform to investigate spindle orientation in cell division 9
Chapter 2. Material and Method 11
2-1. Cell culture, Drug, and Synchronization 11
2-2. Sphere-forming assay 12
2-3. Preparation of the sphere-derived cancer stem cells and sphere-derived adherent cells 12
2-4. Microscope and Immunofluorescence staining 13
2-5. RNA extraction and RT-qPCR 13
2-6. Western blot 14
2-7. Time-lapse Imaging 15
Chapter 3. Result and Discussion 16
3-1. Evolution Stemness in cancer 16
3-1-1. Isolation of CSCs from HCT116 by sphere-forming assay 16
3-1-2. Canonical stemness markers varied from SDCSCs to SDACs 17
3-1-3. Stem-like properties of SDCSCs in every generation 17
3-1-4. Comparing the stemness properties between early and later generation 18
3-1-5. The sphere-forming capability 19
3-2. Spindle orientation in asymmetric cell division 20
3-2-1. Wnt3a beads and Ciliobrevin D regulate cell division direction in mouse embryonic stem cells 20
Chapter 4. Conclusion and Future work 22
Chapter 5. Reference 24
dc.language.isozh-TW
dc.subject紡錘體方向調控zh_TW
dc.subject不對稱細胞分裂zh_TW
dc.subject胚胎幹細胞zh_TW
dc.subject癌症幹細胞zh_TW
dc.subject幹性zh_TW
dc.subject癌症演化zh_TW
dc.subject實驗演化學zh_TW
dc.subjectasymmetric cell divisionen
dc.subjectcancer evolutionen
dc.subjectexperimental evolutionen
dc.subjectstemnessen
dc.subjectcancer stem cellen
dc.subjectspindle orientationen
dc.title探討在癌細胞中演化幹性與不對稱細胞分裂zh_TW
dc.titleEvolution of Stemness and Asymmetric Cell Division in Canceren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江運金(Yun-Jin Jiang),吳?承(Hsuan-Chen Wu)
dc.subject.keyword癌症演化,實驗演化學,幹性,癌症幹細胞,胚胎幹細胞,不對稱細胞分裂,紡錘體方向調控,zh_TW
dc.subject.keywordcancer evolution,experimental evolution,stemness,cancer stem cell,asymmetric cell division,spindle orientation,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201803050
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved