請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張陸滿(Luh-Maan Chang) | |
| dc.contributor.author | Chin-Tsun Chen | en |
| dc.contributor.author | 陳錦村 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:30:50Z | - |
| dc.date.available | 2020-09-03 | |
| dc.date.copyright | 2020-09-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-31 | |
| dc.identifier.citation | Aldrich, C., and Barkhuizen, M., 2003, Process system identification strategies based on the use of singular spectrum analysis. Minerals engineering 16.9: 815-826. Allen, R. M., Gasparini, P., Kamigaichi, O., and Bose, M., 2009, The status of earthquake early warning around the world: an introductory overview. Seismological Research Letters, 80(5), 682-693. Allen, R. M., and Smith, L. A., 1996, Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. Journal of Climate 9.12 3373-3404. Alonso, F. J., Del Castillo J. M., and Pintado P., 2005, Application of singular spectrum analysis to the smoothing of raw kinematic signals. Journal of biomechanics 38.5 1085-1092. Amick, H., Gendreau M. L., and Gordon C. G., 2002, Facility vibration issues for Nanotechnology research. Symposium on Nano Device Technology, National Chiao-Tung University, Hsinchu, Taiwan. Auersch, L., 2005, The excitation of ground vibration by rail traffic: theory of vehicle–track–soil interaction and measurements on high-speed lines. Journal of Sound and Vibrations, 284 103-112 Bialowons, W., Amirikas, R., Bertolini, A., Krticker, D., 2007, Measurement of ground motion in various sites. Deutsches Elektronen-Synchrotron DESY, DESY 07-051 Böse, M., Heaton, T., and Hauksson, E., 2012, Rapid estimation of earthquake source and ground-motion parameters for earthquake early warning using data from a single three-component broadband or strong-motion sensor. Bulletin of the Seismological Society of America, 102(2), 738-750. Bozzo, E., Carniel, R., and Fasino, D., 2010, Relationship between Singular Spectrum Analysis and Fourier analysis: Theory and application to the monitoring of volcanic activity. Computers Mathematics with Applications 60.3: 812-820. Broomhead, Dr S., and King G. P., 1986, Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena 20.2-3: 217-236. Brownjohn, James M. W., and Pan, T. C., 2001, Response of tall buildings to weak long distance earthquakes. Earthquake engineering structural dynamics, 30.5, 709-729. Carniel, R., et al., 2006, On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli. Natural Hazards and Earth System Science 6.6: 903-909. Chen, C.-H., Huang, T.-C., an Ko, Y.-Y., 2010, In-situ ground vibration tests in Southern Taiwan Science Park. Journal of Vibration and Control, 17(8) 1211–1234 Chen, C.-T., Chang, L.-M., Chen, C.-H., 2013, The earthquake impact on wafer fab. The Twenty-Sixth KKHTCNN Symposium on Civil Engineering, November 18-20, Singapore Chen, C.-T., Chang, L.-M., Loh, C.-H., 2020, A review on spectral analysis for low frequency transient vibration. Journal of Low Frequency Noise, Vibration and Active Control, doi: 10.1177/1461348420942008 Chen, D.-Y., Hsiao, N.-C., and Wu, Y.-M., (2015) 'The earthworm based earthquake alarm reporting system in Taiwan,' Bulletin of the Seismology Society of America, 105(2). Chen, Y.-J., Ju, S.-H., Ni, S.-H., Shen, Y.-J., 2007, Prediction methodology for ground vibration induced by passing trains on bridge structures. Journal of Sound and Vibration, 302 806–820 Coifman, R. R., and Wickerhauser, M. V., 1992, Entropy-based algorithms for best basis selection. IEEE Transactions on information theory 38.2: 713-718. Connolly, D. P., Kouroussis, G., Woodward, P. K., Costa, P. A., Verlinden, O., Forde, M. C., 2014, Field testing and analysis of high speed rail vibrations. Soil Dynamics and Earthquake Engineering, 67 102–118 Connolly, D. P., Kouroussis, G., Laghrouche, O., Ho, C.-L., Forde, M. C., 2015, Benchmarking railway vibrations – Track, vehicle, ground and building effects. Construction and Building Materials, 92 64–81 Connolly, D. P., Costa, P. A., Kouroussis, G., Galvín, P., Woodward, P. K., Laghrouche, O., 2015, Large scale international testing of railway ground vibrations across Europe. Soil Dynamics and Earthquake Engineering, 71 1–12 Federal Transit Administration, (2018) “Transit Noise and Vibration Impact Assessment Manual,” FTA Report, No. 0123, September Feng, S.-J., Zhang, X.-L., Wang, L., Zheng, Q.-T., Du, F.-L., Wang, Z.-L., 2017, In situ experimental study on high speed train induced ground vibrations with the ballast-less track. Soil Dynamics and Earthquake Engineering, 102 195–214 Golyandina, N., Nekrutkin, V., and Zhigljavsky, A. ,2001, Analysis of time series structure: SSA and related techniques. In D.R. Cox V. Isham (Eds.), Monographs on statistics and applied probability (Vol. 90). Boca Raton: Chapman Hall, CRC, London, NY, Washington, D.C. Gordon, C. G., and Ungar, E. E., 1983, Vibration Criteria for Microelectronics Manufacturing Equipment. Proceedings of Inter-Noise 83, 487-490. Hashad, A., 2018, Using dynamic analysis of site vibration to select the suitable vibration limit. HBRC Journal, 14, 180–188 Hassani, H., 2007, Singular spectrum analysis: methodology and comparison. Journal of Data Science, 5(2) 239-257. Huang, S.-K., Chen, C.-T., Loh C.-H., and Chang L.-M., 2015, Identification of Ground Motion Features of Far Field Seismic Waves: Early Warning for High Tech Facility. 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Torino, Italy Huang, S.-K., Chen, C.-T., Loh C.-H., and Chang L.-M., 2018, Extracting ground motion Characteristics of distant earthquakes for mitigating displacement-sensitive equipment. Journal of Low Frequency Noise, Vibration and Active Control, 37(4), 859-880 Huang, S.-K., Loh, C.-H., and Chen, C.-T., 2016, Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform. SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics Hwang, J.-S., Huang, Y.-N., Hung Y.-H., and Huang J.-C., 2004, Applicability of seismic protective systems to structures with vibration-sensitive equipment. Journal of Structural Engineering , 130(11) 1676-1684 Institute of Earth Sciences, Academia Sinica, Taiwan, 1996, Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network. doi:10.7914/SN/TW Ju, S.-H., Lin, H.-T., and Chen, T.-K., 2007, Studying Characteristics of Train-Induced Ground Vibrations Adjacent to an Elevated Railway by Field Experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(10) 1302-1307 Kanamori, H., 2005, Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci., 33, 195-214. Kuo, K.-W., Shin, T.-C., and Wen, K.-L., 1995, Taiwan strong motion instrumentation program (TSMIP) and preliminary analysis of site effects in Taipei basin from strong motion data. Urban Disaster Mitigation: The Role of Engineering and Technology: 47-62. Lak, M.A., Degrande, G., Lombaert, G., 2011, The effect of road unevenness on the dynamic vehicle response and ground-borne vibrations due to road traffic. Soil Dynamics and Earthquake Engineering, 31 1357–1377 Lee, G.-C., Liang, Z., Song, J.-W., Shen, J.-D., Liu, W.-C., 1999, Development of measurement capability for micro-vibration evaluations with application to chip fabrication facilities. Technical report MCEER-99-0020 Liu, K.-S., Shin, T.-C., and Tsai, Y.-B., 1999, A free-field strong motion network in Taiwan: TSMIP. Terrestrial, Atmospheric and Oceanic Sciences 10.2: 377-396. Lombaert, G., Degrande, G., 2001, Experimental validation of a numerical prediction model for free field traffic induced vibrations by in situ experiments. Soil Dynamics and Earthquake Engineering, 21, 485-497 López-Mendoza, D., Romero, A., Connolly, D. P., Galvín, P., 2017, Scoping assessment of building vibration induced by railway traffic. Soil Dynamics and Earthquake Engineering, 93 147–161 Madshus, C., Kaynia, A. M., 2000, High-speed railway lines on soft ground: dynamic behaviour at critical train speed. Journal of Sound and Vibration, 231(3) 689-701 Nakamura, Y., On the urgent earthquake detection and alarm system (UrEDAS), (1988). In Proc. of the 9th World Conference on Earthquake Engineering, vol. 7, pp. 673-678. Odaka, T., Ashiya, K., Tsukada, S. Y., Sato, S., Ohtake, K., and Nozaka, D., 2003, A new method of quickly estimating epicentral distance and magnitude from a single seismic record. Bulletin of the Seismological Society of America, 93(1), 526-532. Pan, T.-C., You X.-T., and Cheng K.-W., 2011, Building response to long-distance major earthquakes. Proc. of 13th World Conference on Earthquake Engineering, Vancouver, Canada, paper No. 804 (2004).30. Romero A., Solis, M., Dominguez J., Galvin, P., 2013, Soil–structure interaction in resonant railway bridges. Soil Dynamics and Earthquake Engineering, 47 108–116 Sanayei, M., Kayiparambil P., A., Moore, J. A., Brett, C. R., 2014, Measurement and prediction of train-induced vibrations in a full-scale building. Engineering Structures, 77 119–128 Sanayei, M., Maurya, P., Moore, J. A., 2013, Measurement of building foundation and ground-borne vibrations due to surface trains and subways. Engineering Structures, 53 102–111 Santos, N. C., A. Colaço, Costa, P. A., Calçada, R., 2016, Experimental analysis of track-ground vibrations on a stretch of the Portuguese railway network. Soil Dynamics and Earthquake Engineering, 90 358–380 Santosa, N. C., Barbosa, J., Calçada, R., Delgado, R., 2017, Track-ground vibrations induced by railway traffic: experimental validation of a 3D numerical model. Soil Dynamics and Earthquake Engineering, 97 324–344 Satriano, C., Wu, Y.-M., Zolla, A., Kanamoni, H., 2011, Earthquake early warning: concept, methods and physical grounds. Soil Dynamics and Earthquake Engineering 31(2), 106-118. Schmidt, R-H. M., 2012, Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry. Phil. Trans. R. Soc. A 370.1973: 3950-3972. Singh, S. K., Mena, E. A. and Castro, R., 1988, Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bulletin of the Seismological Society of America 78.2: 451-477. Stafford, P. J., Berrill, J. B., and Pettinga, J. R., 2009, New predictive equations for Arias intensity from crustal earthquakes in New Zealand. Journal of Seismology 13.1: 31-52. Sun, L.-M., 2015, Study on environmental vibration and mitigation countermeasures caused by running high-speed train on railway viaduct. Ph.D. thesis, , Hokkaido University, Sapporo, Japan Takemiya, H., Bian, X.-C. ,2007. Shinkansen high-speed train induced ground vibrations in view of viaduct–ground interaction. Soil Dynamics and Earthquake Engineering, 27 506–520 Takemiya, H., 2008, Analyses of wave field from high-speed train on viaduct at shallow/deep soft grounds. Journal of Sound and Vibration, 310 631–649 Ulgen, D., Ertugrul, O. L., Ozkan, M. Y., 2016, Measurement of ground borne vibrations for foundation design and vibration isolation of a high-precision instrument. Measurement, 93 385–396 Ungar, E. E., and Gordon, C. G., 1983, Vibration Challenges in Microelectronics Manufacturing. Shock and Vibration Bulletin, 53(I):51-58. Vautard, R., and Ghil, M., 1989, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena 35.3: 395-424. Vautard, R., Yiou, P. and Ghil, M., 1992, Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena 58.1: 95-126. With, C., Bodare, A., 2007, Prediction of train-induced vibrations inside buildings using transfer functions. Soil Dynamics and Earthquake Engineering, 27 93–98 Wu, Y.-M., Lee, W. H. K., Chen, C.-C., Shin, T.-C., Teng, T.-L., Tsai, Y.-B., 2000, Performance of the Taiwan rapid earthquake information release system (RTD) during the 1999 Chi-Chi (Taiwan) earthquake. Seismological Research Letters 71.3: 338-343. Wu, Y.-M., Shin, T.-C., Chen, C.-C., Tsai, Y.-B., Lee, W. H. K., Teng, T.-L., 1997, Taiwan rapid earthquake information release system. Seismological Research Letters, 68.6: 931-943. Xia, H., Cao, Y.-M., Roec, G. D., 2010, Theoretical modeling and characteristic analysis of moving-train induced ground vibrations. Journal of Sound and Vibration, 329 819–832 Xu, Y.-L., Yang, Z.-C., Chen, J., Liu, H.-J., J. Chen, J., 2003, Microvibration control platform for high technology facilities subject to traffic-induced ground motion. Engineering Structures, 25 1069-1082 Yamamoto, S., Rydelek, P., Horiuchi, S., Wu, C., and Nakamura, H., 2008, On the estimation of seismic intensity in earthquake early warning systems. Geophysical research letters, 35(7). Yiou, P., Sornette, D., and Ghil. M., 2000, Data-adaptive wavelets and multi-scale singular-spectrum analysis. Physica D: Nonlinear Phenomena, 142.3: 254-290 Zhai, W., Wei, K., Song, X., Shao, M., 2015, Experimental investigation into ground vibrations induced by very high speed trains on a non-ballasted track. Soil Dynamics and Earthquake Engineering, 72 24–36 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70550 | - |
| dc.description.abstract | 許多精密內儀器,為了降低微振動的干擾,裝設了主動隔振系統,而依照隔振理論,在頻率小於√2倍系統自然頻率的振動是會被放大的,反而讓精密儀器對低頻振動更加敏感,低頻振動雖然不會造成破片等直接損失,但可能造成生產良率降低、儀器當機等之間接損失。由於低頻振動對高科技產業越來越重要,所以有必要對傳統頻譜分析方法和低頻振動來源重新檢視。作者發現頻譜分析所取的時間長度(頻率解析度),會影響頻譜分析的結果,尤其是低頻暫態振動,然而,對進行頻譜分析所取的時間長度,目前並沒有標準或規範可供依循,例如造成當年台南科學園區高鐵振動的議題,各家顧問公司的分析沒有共同的基準,分析結果的比較各說各話,導致不少爭議。本研究旨在探索頻譜分析所取的時間長度(頻率解析度) 如何影響頻譜分析的結果,並深入討論其理論基礎和詳述頻譜分析的步驟,以及透過補零(zero-padding)的方式進行頻譜分析。本研究同時以高鐵在高架橋上行駛和車輛在平面道路上行駛所引起的暫態振動,和環境背景微振動進行不同方法的分析比較,分析結果驗證了利用補零(zero-padding)的方式獲得較細的頻譜分佈寬度,可以提高低頻振動分析的精確度,可為不同研究者之間建立共同比較的基礎。 另外,來自遠方且規模大地震可能包含長週期的地震波,週期可能長達10秒以上(0.1 Hz以下),此種遠域地震並不會造成建築物的損壞或讓人員產生不適,然而當震幅達一定大小,可能會對高科技廠房內的振動敏感機台產生影響。本研究利用台灣的強地動觀測網的地震紀錄和高科技廠房內的地震觀測系統,分析了10個遠域地震的震波內涵特性,利用奇異譜(Singular Spectrum Analysis)分析萃取地震波特性,同時藉由探討高科技廠房關鍵機台掃描機(scanner)的動力行為特性,使用0~0.7 Hz間的累積功率頻譜密度(accumulative power spectral density)和低頻加速度(low frequency acceleration)計算震幅,然後討論震波週期和震幅與掃描機當機的關聯,最後對遠域地震所引起的低頻振動的防治對策提出了可行的方法。 | zh_TW |
| dc.description.abstract | The precision tools equipped with active vibration isolation platform in high-tech facilities are sensitive to low frequency vibration. Currently, there is neither standards nor rules to select the time period of vibration data for conducting the spectral analysis of low frequency vibration, and none of the analyses can be used to compare and discuss the differences of spectral amplitude generated by the selection of different time periods. Therefore, the spectral analysis at low frequency range is a crucial issue to estimate the amplitude of low frequency vibration. This thesis is to elaborate the spectral analysis procedures on the vibration signal with various band widths by using zero-padding on the vibration signal in low frequency band. The mechanism not only facilitates obtaining more reliable result but also laying a common base for comparison among various users. Finally, the in-situ measurement data, including high-speed train induced low frequency vibration, will be used to exemplify the length of time period affects the results of spectral analysis, either on narrowband or one-third octave band analysis. Besides, the vibration of long period signal and seismic records collected from far distant and large magnitude earthquake may also induce long period seismic waves. These long period seismic waves may have dominant period up to 10 sec but with small amplitude which may cause the shut-down of high precision tools in high-tech fab. For general type of structures this kind of seismic waves may not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, the long period seismic waves may induce significant damage for some crucial tools in high tech Fab if the amplitude generates resonant effect on the fab structure and/or tools. In this study, the characteristics of long period seismic wave for the pre-event data from each seismic event was investigated. The dominant frequencies of these data were extracted by using singular spectrum analysis (SSA) and multivariate singular spectrum analysis (MSSA). Through the investigation of the dynamic behavior characteristic of crucial tool scanner of high-tech Fab, cumulative PSD (Power Spectral Density) and low frequency acceleration between 0 and 0.7 Hz was used to estimate the amplitude. Discussion on the proposed two features, dominant frequencies and amplitude, among recorded seismic events and the damage severity to the high tech facilities will be made. Finally, the countermeasure of slope index which could provide earthquake early warning to avoid the impact of far distant earthquake induced low frequency vibration will be recommended. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:30:50Z (GMT). No. of bitstreams: 1 U0001-3008202023053000.pdf: 4587217 bytes, checksum: ffbfa3afe2f7c01c3334f691eb24e2d9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 .................................................................................................................... i ABSTRACT ....................................................................................................... ii 中文摘要 …………………………………………………………………….... iv TABLE OF CONTENTS ……………………………………………………. vi LIST OF FIGURES ………………………………………………………….. ix LIST OF TABLES …………………………………………………………… xiii CHAPTER 1: INTRODUCTION ...………...………………………………. 1 1.1 PROBLEM STATEMENT ……………………...…………………….…… 2 1.2 RESEARCH OBJECTIVES ...……………….……………………………. 4 1.3 RESEARCH METHODOLOGY ………..…...…..………………………… 5 1.4 ORGANIZATION OF THIS DISSERTATION ………………………………. 8 CHAPTER 2: LITERATURE REVIEW …..………………………………. 11 2.1 SPECTRAL ANALYSIS OF LOW FREQUENCY (LONG PERIOD) SIGNAL …. 12 2.2 THE SELECTION OF TIME PERIOD ……………………………………... 12 2.3 GENERIC VIBRATION CRITERIA ……………………………………….. 14 2.4 DISCRETE -TIME FOURIER TRANSFORM (DTFT) AND DISCRETE FOURIER TRANSFORM ……………………......................................... 18 2.5 SPECTRAL ANALYSIS OF SIGNAL WITH ZERO-PADDING ……………….. 20 2.6 ANALYSIS OF ONE-THIRD OCTAVE BAND ………………………............... 25 CHAPTER 3: IN-SITU MEASUREMENT DATA ANALYSIS ……………. 31 3.1 1/3 OCTAVE BAND ANALYSIS OF HIGH-SPEED TRAIN INDUCED TRANSIENT VIBRATION AT FREE FIELD ...……………………………… 32 3.2 NARROWBAND ANALYSIS OF HIGH-SPEED TRAIN INDUCED TRANSIENT VIBRATION AT FREE-FIELD …..………………………………………….. 38 3.3 ONE-THIRD OCTAVE BAND ANALYSIS OF HIGH-SPEED TRAIN INDUCED TRANSIENT VIBRATION OF A NEARBY BUILDING …………………….. 44 3.4 ONE-THIRD OCTAVE BAND ANALYSIS OF SITE AMBIENT VIBRATION …. 47 3.5 ONE-THIRD OCTAVE BAND ANALYSIS OF VEHICLE-INDUCED VIBRATION ... 50 CHAPTER 4: IMPACT OF FAR DISTANT EARTHQUAKES ON VIBRATION-SENSITIVE TOOL ………...……………………………….. 55 4.1 IMPACT OF LOW FREQUENCY WAVES ON PRECISION TOOL …………………. 56 4.2 STRONG MOTION ARRAYS IN TAIWAN……….…………………………… 59 4.3 VIBRATION-SENSITIVE EQUIPMENT ………………………………………. 68 CHAPTER 5: SIGNAL PROCESSING AND FEATURE EXTRATION OF FAR DISTANT EARTHQUAKE ……………………………………… 79 5.1 SINGULAR SPECTRUM ANALYSIS …………………………………………. 79 5.2 DETECTION OF LONG-PERIOD SEISMIC WAVES FROM FAR DISTANT EARTHQUAKES…..……………………………………………………….. 85 CHAPTER 6: DEVELOPMENT OF SLOPE INDEX AND EARLY WARNING …………………………………………………………………….. 93 6.1 ARIAS INTENSITY AND SLOPE INDEX …………………………………….. 93 6.2 SLOPE INDEX ON SSA APPROACH ………………………………………… 96 CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH ….………… 101 7.1 SPECTRAL ANALYSIS FOR LOW FREQUENCY TRANSIENT VIBRATION … 102 7.2 IDENTIFICATION AND EXTRACTION OF FAR DISTANT EARTHQUAKE FEATURES …………………………………………………………... 104 7.3 FUTURE RESEARCH ………………….………………………………... 105 REFERCNCES ………………………………………………………………. 107 APPENDIX …………………………………………...………………………. 115 | |
| dc.language.iso | en | |
| dc.subject | 車輛引起之振動 | zh_TW |
| dc.subject | 高科技廠房 | zh_TW |
| dc.subject | 遠域地震 | zh_TW |
| dc.subject | 1/3八倍頻 | zh_TW |
| dc.subject | 補零 | zh_TW |
| dc.subject | 頻譜分析 | zh_TW |
| dc.subject | 低頻振動 | zh_TW |
| dc.subject | zero-padding | en |
| dc.subject | 1/3 octave band | en |
| dc.subject | low frequency vibration | en |
| dc.subject | traffic-induced vibration | en |
| dc.subject | high-tech Fab | en |
| dc.subject | far distant earthquake | en |
| dc.subject | spectral analysis | en |
| dc.title | 低頻振動之頻譜分析及其對高科技廠房精密儀器之影響 | zh_TW |
| dc.title | The Spectral Analysis of Low Frequency Vibration and Impact on Precision Tools of High Tech Fab | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-6393-0550 | |
| dc.contributor.coadvisor | 羅俊雄(Chin-Hsiung Loh) | |
| dc.contributor.oralexamcommittee | 荷世平(S-Ping Ho),陳柏翰(Po-Han Chen),黃震興(Jenn-Shin Hwang),莊子壽(Tzu-Sou Chuang) | |
| dc.subject.keyword | 頻譜分析,低頻振動,車輛引起之振動,補零,1/3八倍頻,遠域地震,高科技廠房, | zh_TW |
| dc.subject.keyword | spectral analysis,low frequency vibration,traffic-induced vibration,zero-padding,1/3 octave band,far distant earthquake,high-tech Fab, | en |
| dc.relation.page | 118 | |
| dc.identifier.doi | 10.6342/NTU202004190 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3008202023053000.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
