請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70547完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁(Hsien-Yeh Chen) | |
| dc.contributor.author | Shih-Ting Chen | en |
| dc.contributor.author | 陳詩婷 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:30:45Z | - |
| dc.date.available | 2020-08-14 | |
| dc.date.copyright | 2018-08-14 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | 1. Castner, D. G., Surface science: View from the edge. Nature 2003, 422 (6928), 129-130.
2. Ratner, B. D., Biomaterials science : an introduction to materials in medicine. 2nd ed.; Elsevier Academic Press: Amsterdam ; Boston, 2004; p xii, 851 p. 3. Murphy, W. L.; McDevitt, T. C.; Engler, A. J., Materials as stem cell regulators. Nat Mater 2014, 13 (6), 547-557. 4. Klee, D.; Höcker, H., Polymers for Biomedical Applications: Improvement of the Interface Compatibility. In Biomedical Applications Polymer Blends, Eastmond, G. C.; Höcker, H.; Klee, D., Eds. Springer Berlin Heidelberg: 1999; Vol. 149, pp 1-57. 5. Roach, P.; Eglin, D.; Rohde, K.; Perry, C. C., Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine 2007, 18 (7), 1263-1277. 6. Chilkoti, A.; Hubbell, J. A., Biointerface Science. MRS Bulletin 2011, 30 (3), 175-179. 7. Fisher, O. Z.; Khademhosseini, A.; Langer, R.; Peppas, N. A., Bioinspired Materials for Controlling Stem Cell Fate. Accounts Chem. Res. 2010, 43 (3), 419-428. 8. Stevens, M. M.; George, J. H., Exploring and engineering the cell surface interface. Science 2005, 310 (5751), 1135-1138. 9. Bhatia, M., Microenvironment Mimicry. Science 2010, 329 (5995), 1024-1025. 10. Spence, J. R.; Mayhew, C. N.; Rankin, S. A.; Kuhar, M. F.; Vallance, J. E.; Tolle, K.; Hoskins, E. E.; Kalinichenko, V. V.; Wells, S. I.; Zorn, A. M.; Shroyer, N. F.; Wells, J. M., Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011, 470 (7332), 105-109. 11. Rustad, K. C.; Wong, V. W.; Sorkin, M.; Glotzbach, J. P.; Major, M. R.; Rajadas, J.; Longaker, M. T.; Gurtner, G. C., Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 2012, 33 (1), 80-90. 12. Yang, K.; Lee, J. S.; Kim, J.; Lee, Y. B.; Shin, H.; Um, S. H.; Kim, J. B.; Park, K. I.; Lee, H.; Cho, S.-W., Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials 2012, 33 (29), 6952-6964. 13. Solanki, A.; Chueng, S. T. D.; Yin, P. T.; Kappera, R.; Chhowalla, M.; Lee, K. B., Axonal Alignment and Enhanced Neuronal Differentiation of Neural Stem Cells on Graphene‐Nanoparticle Hybrid Structures. Advanced Materials 2013, 25 (38), 5477-5482. 14. Mwale, F.; Wang, H. T.; Nelea, V.; Luo, L.; Antoniou, J.; Wertheimer, M. R., The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. Biomaterials 2006, 27 (10), 2258-2264. 15. Villa-Diaz, L. G.; Nandivada, H.; Ding, J.; Nogueira-de-Souza, N. C.; Krebsbach, P. H.; O'Shea, K. S.; Lahann, J.; Smith, G. D., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotech. 2010, 28 (6), 581-583. 16. Huang, G.-S.; Dai, L.-G.; Yen, B. L.; Hsu, S.-h., Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011, 32 (29), 6929-6945. 17. Langer, R.; Tirrell, D. A., Designing materials for biology and medicine. Nature 2004, 428 (6982), 487-492. 18. Lewis, F.; Mantovani, D., Methods to Investigate the Adhesion of Soft Nano-Coatings on Metal Substrates – Application to Polymer-Coated Stents. Macromolecular Materials and Engineering 2009, 294 (1), 11-19. 19. Luo, Y.; Yang, L.; Tian, M.; Ge, S.; Wang, Q., The friction and wear behavior of WC coating on medical grade titanium alloys. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2013, 227 (8), 845-849. 20. Zuk, P. A.; Zhu, M.; Ashjian, P.; De Ugarte, D. A.; Huang, J. I.; Mizuno, H.; Alfonso, Z. C.; Fraser, J. K.; Benhaim, P.; Hedrick, M. H., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell 2002, 13 (12), 4279-4295. 21. Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering 2001, 7 (2), 211-228. 22. Bartfeld, S.; Clevers, H., Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine 2017, 95 (7), 729-738. 23. Golpanian, S.; Wolf, A.; Hatzistergos, K. E.; Hare, J. M., Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiological Reviews 2016, 96 (3), 1127-1168. 24. Cesarz, Z.; Tamama, K., Spheroid culture of mesenchymal stem cells. Stem cells international 2016, 2016. 25. Mueller-Klieser, W., Three-dimensional cell cultures: from molecular mechanisms to clinical applications. American Journal of Physiology-Cell Physiology 1997, 273 (4), C1109-C1123. 26. Fortin, J.; Lu, T.-M., A model for the chemical vapor deposition of poly (para-xylylene)(parylene) thin films. Chemistry of materials 2002, 14 (5), 1945-1949. 27. Gorham, W. F., A New, General Synthetic Method for the Preparation of Linear Poly‐p‐xylylenes. Journal of Polymer Science Part A: Polymer Chemistry 1966, 4 (12), 3027-3039. 28. Szwarc, M., Some remarks on the CH 2 [graphic omitted] CH 2 molecule. Discussions of the Faraday Society 1947, 2, 46-49. 29. de la Oliva, N.; Mueller, M.; Stieglitz, T.; Navarro, X.; del Valle, J., On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Scientific reports 2018, 8 (1), 5965. 30. Castagnola, V.; Descamps, E.; Lecestre, A.; Dahan, L.; Remaud, J.; Nowak, L. G.; Bergaud, C., Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosensors and Bioelectronics 2015, 67, 450-457. 31. Wu, J.-T.; Wu, C.-Y.; Fan, S.-K.; Hsieh, C.-C.; Hou, Y.-C.; Chen, H.-Y., Customizable Optical and Biofunctional Properties of a Medical Lens Based on Chemical Vapor Deposition Encapsulation of Liquids. Chemistry of Materials 2015, 27 (20), 7028-7033. 32. Lahann, J.; Klee, D.; Höcker, H., Chemical vapour deposition polymerization of substituted [2.2] paracyclophanes. Macromolecular Rapid Communications 1998, 19 (9), 441-444. 33. Lahann, J.; Höcker, H.; Langer, R., Synthesis of Amino [2.2] paracyclophanes—beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie International Edition 2001, 40 (4), 726-728. 34. Nandivada, H.; Chen, H. Y.; Lahann, J., Vapor‐Based Synthesis of Poly [(4‐formyl‐p‐xylylene)‐co‐(p‐xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular rapid communications 2005, 26 (22), 1794-1799. 35. Nandivada, H.; Chen, H. Y.; Bondarenko, L.; Lahann, J., Reactive polymer coatings that “click”. Angewandte Chemie International Edition 2006, 45 (20), 3360-3363. 36. Iwatsuki, S.; Itoh, T.; Kubo, M.; Okuno, H., Synthesis and polymerization of 4-vinyl [2.2] paracyclophane. Polymer Bulletin 1994, 32 (1), 27-34. 37. Lahann, J.; Choi, I. S.; Lee, J.; Jensen, K. F.; Langer, R., A new method toward microengineered surfaces based on reactive coating. Angewandte Chemie International Edition 2001, 40 (17), 3166-3169. 38. Lahann, J.; Klee, D.; Pluester, W.; Hoecker, H., Bioactive immobilization of r-hirudin on CVD-coated metallic implant devices. Biomaterials 2001, 22 (8), 817-826. 39. Guan, Z.-Y.; Wu, C.-Y.; Wu, J.-T.; Tai, C.-H.; Yu, J.; Chen, H.-Y., Multifunctional and Continuous Gradients of Biointerfaces Based on Dual Reverse Click Reactions. ACS applied materials & interfaces 2016, 8 (22), 13812-13818. 40. Bally, F.; Cheng, K.; Nandivada, H.; Deng, X.; Ross, A. M.; Panades, A.; Lahann, J., Co-immobilization of biomolecules on ultrathin reactive chemical vapor deposition coatings using multiple click chemistry strategies. ACS applied materials & interfaces 2013, 5 (19), 9262-9268. 41. Tsutsumi, S.; Shimazu, A.; Miyazaki, K.; Pan, H.; Koike, C.; Yoshida, E.; Takagishi, K.; Kato, Y., Retention of Multilineage Differentiation Potential of Mesenchymal Cells during Proliferation in Response to FGF. Biochem. Biophys. Res. Commun. 2001, 288 (2), 413-419. 42. Sotiropoulou, P. A.; Perez, S. A.; Salagianni, M.; Baxevanis, C. N.; Papamichail, M., Characterization of the Optimal Culture Conditions for Clinical Scale Production of Human Mesenchymal Stem Cells. Stem Cells 2006, 24 (2), 462-471. 43. Solchaga, L. A.; Penick, K.; Porter, J. D.; Goldberg, V. M.; Caplan, A. I.; Welter, J. F., FGF‐2 enhances the mitotic and chondrogenic potentials of human adult bone marrow‐derived mesenchymal stem cells. Journal of Cellular Physiology 2005, 203 (2), 398-409. 44. Wu, C.-Y.; Huang, C.-W.; Guan, Z.-Y.; Wu, J.-T.; Yeh, S.-Y.; Su, C.-T.; Chang, C.-H.; Ding, S.-T.; Chen, H.-Y., Vapor-based coatings for antibacterial and osteogenic functionalization and the immunological compatibility. Materials Science and Engineering: C 2016, 69, 283-291. 45. Tsai, M.-Y.; Lin, C.-Y.; Huang, C.-H.; Gu, J.-A.; Huang, S.-T.; Yu, J.; Chen, H.-Y., Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications 2012, 48 (89), 10969-10971. 46. Chen, H.-Y.; Lin, T.-J.; Tsai, M.-Y.; Su, C.-T.; Yuan, R.-H.; Hsieh, C.-C.; Yang, Y.-J.; Hsu, C.-C.; Hsiao, H.-M.; Hsu, Y.-C., Vapor-based tri-functional coatings. Chemical Communications 2013, 49 (40), 4531-4533. 47. Wu, J.-T.; Sun, T.-P.; Huang, C.-W.; Su, C.-T.; Wu, C.-Y.; Yeh, S.-Y.; Yang, D.-K.; Chen, L.-C.; Ding, S.-T.; Chen, H.-Y., Tunable coverage of immobilized biomolecules for biofunctional interface design. Biomaterials Science 2015, 3 (9), 1266-1269. 48. Wu, C.-Y.; Liu, H.-Y.; Huang, C.-W.; Yeh, S.-Y.; Cheng, N.-C.; Ding, S.-T.; Chen, H.-Y., Synergistically Controlled Stemness and Multilineage Differentiation Capacity of Stem Cells on Multifunctional Biointerfaces. Advanced Materials Interfaces 2017, 1700243-1700252. 49. Chen, H.-Y., Micro- and nano-surface structures based on vapor-deposited polymers. Beilstein Journal of Nanotechnology 2017, 8, 1366–1374. 50. Kurland, N. E.; Drira, Z.; Yadavalli, V. K., Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 2012, 43 (2–3), 116-128. 51. Yeh, H.-Y.; Liu, B.-H.; Sieber, M.; Hsu, S.-h., Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC genomics 2014, 15 (1), 10. 52. Fletcher, D. A.; Mullins, R. D., Cell mechanics and the cytoskeleton. Nature 2010, 463, 485. 53. Huang, G. S.; Dai, L. G.; Yen, B. L.; Hsu, S. H., Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011, 32 (29), 6929-45. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70547 | - |
| dc.description.abstract | 為了使表面具有特定的功能性,進而提升各方面的應用價值,表面處理/改質技術一直是材料科學及界面科學等研究領域的熱門議題,不僅鞭策著改質能力的持續進步,技術的發展也根據不同需求而更加多元化,使得不論是製程與功能性都具有更多選擇性。
對於表面改質技術而言,改質層正在尋求表面化學的精確定義,且必須與基材間具有良好的附著強度,又同時維持本身的優秀化學特性,以確保在生物技術應用的長期穩定性和有效功能性。本研究為了提升幹細胞培養的效率與品質,期望使生物界面擁有更豐富的功能性,遂選用官能化前驅物,並利用化學氣相沉積(CVD)共聚後形成功能性聚對二甲苯(poly-p-xylylene,PPX)高分子鍍膜,其不僅具有高度的生物相容性,更擁有協同的化學改質能力。此一客製化製程將不受限於表面之幾何形狀,且利用雙向式(dual-source)的進料系統設計,可使表面同時帶有N-羥基琥珀醯亞胺(NHS)酯與馬來醯亞胺(maleimide)兩種官能基團,並經化學修飾後可作為幹細胞培養之生物界面。 由於材料被賦予穩定的可反應官能基,以化學共價結合的表面改質方法便可順利達成,此外,藉由沉積過程中兩官能基團之比例控制,將決定幾丁聚醣(chitosan)和成纖維細胞生長因子(FGF-2)等分子在基材表面的固定化可達性。研究中透過馬來醯亞胺-硫醇(maleimide-thiol click reaction)反應以及N-羥基琥珀醯亞胺-胺基(NHS ester-amine coupling reaction)反應,能夠在共聚改質表面上修飾兩種分子,其中chitosan的主要功用為誘導幹細胞聚集而形成球體,並透過協同存在的FGF-2促進基材表面及幹細胞球體內的細胞增殖, 在材料的性質方面,共聚高分子改質表面在附著性與熱穩定性測試下,展現出優異的穩固與耐久性,且該層為一結構均勻而緻密的高分子鍍膜,因此對於周圍的生物環境不存在引起潛在毒性之疑慮,而對於表面之官能化結構比例,也能依照需求在製程中精確地進行控制,並藉由精密的表面化學分析方法得到驗證。在生物功能性的測試下,研究利用培養人類脂肪幹細胞(human adipose derived stem cells)進行一系列實驗,觀察到當幹細胞培養於同時修飾兩種分子chitosan/FGF-2的表面時,細胞將擁有更興盛的生長活性,且隨著時間的成長,不僅能有效地加快細胞數量與球體尺寸的增加,又能在長時間培養後仍維持著高水準的細胞幹性(stemness)。 本研究提供了一套表面改質方法,證實藉由化學氣相沉積製備的雙官能基高分子鍍膜,不論其結構穩定性、化學精確性與協同反應性都是備受肯定的,此外也驗證了化學修飾後表面所擁有之特性,確實有助於促進幹細胞球體的生長與幹性維持,對於生物材料界面與幹細胞研究都是相當有價值的。 | zh_TW |
| dc.description.abstract | Surface modification layers are needed for the precise definition of surface chemistries and are equally important for durable and stable adhesive properties to ensure long-term stability and effective performance for biotechnological applications. This study demonstrates a robust modification layer that is synthesized based on chemical vapor deposition (CVD) copolymerization, and the resultant coating layer is composed of the side-by-side presentation of N-hydroxysuccinimide (NHS) ester and maleimide functionalities with a controlled ratio to define the immobilization accessibility of chitosan and fibroblast growth factor (FGF-2) molecules on the substrate surface for cell culture of human adipose derived stem cells (ADSCs). Characterizations of the copolymer modification layer showed excellent durability including adhesive strength and thermal stability, and the layer is free of concerns for delamination and/or unacceptable deformation/debris formation that can cause potential toxicity to the surrounding biological environment. Modifications using the copolymer layer on the cell culture surface have demonstrated synergistic activity by chitosan to support the formation of spheroids and by FGF-2 to enhance the proliferation of ADSCs within the spheroids while increasing the spheroid size and cell numbers. Healthy and flourishing growth activities were discovered for ADSCs on the modified culture surfaces, and the results are useful for potential and related stem cell research and the interfaces of biomaterials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:30:45Z (GMT). No. of bitstreams: 1 ntu-107-R05524043-1.pdf: 2799329 bytes, checksum: 9fa51cc638bef8fd8b4cbd66f8b5821f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV Content VI List of Figures IX List of Tables XI Chapter 1 Introduction 1 1.1 Introduction 1 1.1.1 Surface modification 1 1.1.2 Formation of stem cell spheroids 3 1.1.3 Functionalized Poly-para-xylylenes 6 1.2 Research Motivation and Objectives 8 Chapter 2 Experimental Section 10 2.1 Analysis Instruments 10 2.2 Consumable Materials 11 2.3 Chemical Vapor Deposition (CVD) 12 2.3.1 Preparation of the Starting Materials 12 2.3.2 CVD Copolymerization 13 2.4 Immobilizations 15 2.5 Surface Characterizations 16 2.5.1 Static Water Contact Angle 16 2.5.2 Fourier Transform Infrared Spectroscopy (FT-IR) 16 2.5.3 X-ray Photoelectron Spectroscopy (XPS) 17 2.6 Stability Examinations of the Culture Interface 18 2.6.1 Mechanical Stability 18 2.6.2 Thermal Stability 18 2.6.3 Leaching Test 19 2.7 Cell Culture 20 2.7.1 Cell Viability and Morphology 20 2.7.2 Cell Stemness 22 2.8 Statistical Analysis 23 Chapter 3 Results and Discussion 24 3.1 Stem Cell Culture Interface 24 3.1.1 Modification Technique 24 3.1.2 Surface Characterization 28 3.1.3 Durability 31 3.2 ADSC Spheroid Culture 37 3.2.1 Cell Proliferation and Spheroid Formation 37 3.2.2 Cell Growth Activity 40 3.2.3 Cell Viability and Morphology 42 3.2.4 Cell Stemness 46 Chapter 4 Conclusions 49 4.1 Conclusions 49 4.2 Future work 50 Reference 51 | |
| dc.language.iso | en | |
| dc.subject | 表面化學改質 | zh_TW |
| dc.subject | 精確控制 | zh_TW |
| dc.subject | 耐久性 | zh_TW |
| dc.subject | 生物界面 | zh_TW |
| dc.subject | 幹細胞球體 | zh_TW |
| dc.subject | precision | en |
| dc.subject | surface modification | en |
| dc.subject | durability | en |
| dc.subject | stem cell | en |
| dc.subject | spheroid | en |
| dc.title | 具備高機械強度之多功能性鍍膜及其在強化幹細胞球體生長活性之研究 | zh_TW |
| dc.title | Enhanced Growth of Stem Cells Spheroids Based on Durable and Chemically Defined Surface Modification Coatings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游佳欣(Jiashing Yu),鄭乃禎(Nai-Chen Cheng) | |
| dc.subject.keyword | 幹細胞球體,表面化學改質,精確控制,耐久性,生物界面, | zh_TW |
| dc.subject.keyword | surface modification,durability,precision,stem cell,spheroid, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU201802992 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
