Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70516
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張靜貞zh_TW
dc.contributor.advisorChing-Cheng Changen
dc.contributor.author朱育賢zh_TW
dc.contributor.authorYu-Hsien Chuen
dc.date.accessioned2021-06-17T04:29:59Z-
dc.date.available2025-01-16-
dc.date.copyright2020-09-29-
dc.date.issued2020-
dc.date.submitted2002-01-01-
dc.identifier.citation中文部份
DIGITIMES企劃 (2014),「Ethernet-based方案 打造數位化智慧工廠」,DIGITIMES電子時報,2014年11 月 10 日,取自:https://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000400518_7t04uu5j2xqeer7dai7s2 (檢索日期:2020/07/15)。
丁維萱、林樂昕 (2019),「迷思:台灣農業轉型、整合真的有必要嗎?」,關鍵評論網,取自:https://www.thenewslens.com/article/117289 (檢索日期:2020/07/15)。
工研院 (2019),「工研院協助產業接軌智慧製造 數位轉型拚經濟」,鉅亨網,2019年10月12日,取自:https://news.cnyes.com/news/id/4393679 (檢索日期:2020/07/15)。
工業局 (2017),「智慧機械」,2017年12月31日,取自:https://www.contacttaiwan.tw/company/docdetail.aspx?uid=770&pid=763&docid=338&lang=1 (檢索日期:2020/07/15)。
林彥呈 (2019),「技嘉、昭輝等六台商回流 累計投資金額逼近6,000億元」,經濟日報,2019年9月19日,取自:https://udn.com/news/story/7238/4057121(檢索日期:2020/07/15)。
行政院 (2015),「行政院生產力4.0發展方案」,臺北:行政院。
行政院主計總處 (2014),「國富統計報告」,臺北:行政院主計總處。
行政院主計總處 (2014),「2011年臺灣地區產業關聯表」,臺北:行政院主計總處。
行政院主計總處 (2014),「國民所得統計年報」,臺北:行政院主計總處。
行政院教育科學文化處(2017),「我國AI的科研戰略」,2017年8月24日,取自:https://www.ey.gov.tw/Page/448DE008087A1971/a76aec69-0950-44c5-bcb8-8e106cd735c5 (檢索日期:2020/07/15)。
行政院新聞傳播處 (2017),「林揆:5年投入160億 建構我國AI創新生態環境」,2017年8月24日,取自:https://www.ey.gov.tw/Page/9277F759E41CCD91/54cb553f-20c3-4374-a96a-e21389ed1ccd (檢索日期:2020/07/15)。
行政院新聞傳播處 (2018),「台灣的AI小國大戰略」,2018年10月16日,取自:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/50a08776-e33a-4be2-a07c-a6e523f5031b (檢索日期:2020/07/15)。
行政院新聞傳播處 (2019),「台灣AI行動計畫—掌握契機,全面啟動產業AI化」,2019年8月7日,取自:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/a8ec407c-6154-4c14-8f1e-d494ec2dbf23 (檢索日期:2020/07/15)。
行政院農業委員會 (2005),「台灣農業發展之展望」,取自:https://www.coa.gov.tw/ws.php?id=10429&print=Y (檢索日期:2020/07/15)。
行政院農業委員會 (2016),「新農業創新推動方案」,臺北:行政院。
行政院農業委員會 (2017),「改善人力結構,農業才有未來」,農政與農情,299。
行政院農業委員會 (2017),「農委會推動改善農業缺工績效良好,新增8個農業專業技術團」,農業新聞。
行政院農業委員會 (2018),「改善農業缺工有步驟,農委會推動增人與省工相關措施」,行政院農業委員會全球資訊網。
行政院農業委員會 (2019),「改善農業缺工成果發表,全力推動農業機械與自動化,擴增多元人力運用管道」,農業新聞。
行政院農業委員會農糧署 (2016),「106年調整耕作制度活化農地計畫」內容重點。行政院農業委員會桃園區農業改良場網頁資料(檢索日期:2019/2/15)。
行政院農業委員會種苗改良繁殖場 (2018),「蔬菜育苗智慧化生產管理系統應用實例分享」,2018年8月20日,取自:https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J142605106593363792&sid=0J176534762474650072 (檢索日期:2020/07/15)。
李永展 (2017),「新農業之可能圖像:智慧農村」,經濟前瞻,171,45-49。
李秉正、徐世勳、林國榮、楊浩彥 (2003),「可計算一般均衡模型應用於競爭政策之可行性研究」,行政院公平交易委員會,九十二年合作研究報告九 FTC-92-C09。
李秉正、張其祿、李慧琳(2010),「擴大政府公共投資支出之經濟成長方案是否依然有效?我國新十大建設計畫的可計算一般均衡分析」,臺灣經濟預測與政策,40卷,2期,127-159。
吳筱雯 (2018),「台達電砸10億 設機器人研發總部」,工商時報,2018年5月5日,取自:https://www.chinatimes.com/amp/newspapers/20180505000368-260511 (檢索日期:2020/07/15)。
林幸君、李慧琳、許聖民、林國榮、李篤華、張靜貞、徐世勳 (2015),「少子化與高齡化下的臺灣人口預測與經濟分析」,臺灣經濟預測與政策,46卷,1期,113-156。
徐世勳、劉瑞文、林幸君 (1997),「臺灣可計算一般均衡(CGE)動態預測模型之建立」,1997年總體經濟計量模型研討會,臺北:中央研究院經濟研究所。
徐世勳、林國榮、蘇漢邦、林桓聖、李篤華 (2006),「臺灣產業結構變動之動態一般均衡預測」,臺灣經濟預測與政策,36(2),1-46。
徐世勳、劉瑞文 (2020),「投入產出分析概論」,臺灣產業關聯學會出版,雙葉書廊有限公司總經銷。
徐瑞玲 (2019) ,「台灣農業設施產業智慧化發展之現況與趨勢」,智慧農業網站,2019年9月3日,取自:https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J142605106593363792&sid=0J246670990193360443 (檢索日期:2020/07/15)。
財團法人國家實驗研究院科技政策研究與資訊中心 (2019),「107年度中央政府科技研發績效彙編」,臺北:科技部。
陳宇晴 (2019),「4家中小企投資逾13億元拚智慧製造 逾60家排隊待審」,鉅亨網,2019年10月25日,取自:https://news.cnyes.com/news/id/4400905?exp=b (檢索日期:2020/07/15)。
陳志維 (2016),「家禽產業智慧化推動策略與目標」,農政與農情,289。
陳柏琪、張靜貞、陳肇男 (2015),「臺灣老年長期照護需求之推計─GEMTEE模型之應用」,人口學刊,第51卷,43-93。
陳柏琪、張靜貞、陳肇男、許聖民、林幸君 (2020),「臺灣縣市別長照需要人口之中長期推計及趨勢分析」,付印中,人文及社會科學集刊。
陳潁慧 (2017),「台東健康智慧農業—台東網路農場」,國土及公共治理季刊,5(1),114-121。
陳駿季、楊智凱 (2017),「推動智慧農業—翻轉臺灣農業」,國土與公共治理季刊,5:104-111。
陳鐵元 (2016),「從智慧製造趨勢看台灣產業的機會與挑戰」,智慧製造技術研討會,彰化。
曹家榮 (2016),「失控的過去與未來,第四次工業革命來了」,數位時代,2016年3月1日,取自:https://www.bnext.com.tw/article/38779/BN-2016-02-26-114535-195 (檢索日期:2020/07/15)。
許聖民、王仁、李篤華、林幸君、蘇忠楨、邱祈榮、張靜貞、徐世勳 (2019),「臺灣農業部門溫室氣體排放趨勢推估─動態可計算一般均衡模型之應用」,臺灣經濟預測與政策。
張淑滿 (2011),「開放陸客來臺觀光對我國經濟影響之一般均衡分析」,臺北海洋技術學院學報,4卷,2期,123 -144。
張靜貞、徐世勳 (2012),「可計算一般均衡(CGE)分析及其應用:以H1N1新型流感對台灣總體與產業經濟之影響評估為例」,何志欽主編,《可計算一般均衡模型在產業發展評估之應用》,第一章,第1-48頁。台南市:國立成功大學社會科學院。
智慧農業共同資訊平台https://agriinfo.tari.gov.tw/ (檢索日期:2020/06/10)。
楊純明 (2008),「精準農業─引領農業永續之正途」,作物、環境與生物資訊,5(2),146-148。
楊智凱、施瑩艷、楊舒涵 (2016),「以智慧科技邁向臺灣農業4.0時代」,農政與農情,289,6-11。
經濟部工業局 (2015),「生產力4.0推動策略與未來展望」。經濟部工業局網頁資料(檢索日期:2020/05/17)。
經濟部工業局產業人才發展資訊網 (2018),「智慧轉動製造 下世代精密機械擠身兆元產業」,2018年12月25日,取自:https://www.italent.org.tw/IndustryAreaD/65/IndArea20190600025 (檢索日期:2020/07/15)。
劉天成 (2000),「我國精準農業的發展方向與策略」,農政與農情,91: 33-36。
劉名寰、楊浩彥 (2018),「科技創新政策經濟效益評估的可計算一般均衡分析-以臺灣資通訊產業研發投資為例」,台灣經濟學會2018年年會暨當代經濟議題學術研討會,臺北:台灣經濟學會。
劉瑞文、許聖民、林幸君、謝德衍、張靜貞、徐世勳 (2018),「政府擴大公共建設投資支出對我國總體經濟、財政及所得分配影響之動態一般均衡分析」,臺灣經濟預測與政策,48(2):41-78。
簡禎富 (2019),「工業3.5:臺灣企業邁向智慧製造與數位決策的戰略」,天下雜誌出版。
農業科技決策資訊平台 (2017),「誰說農業不能搭AI 科技部長扛鋤頭推智慧農業」,2017年12月5日,取自:https://agritech-foresight.atri.org.tw/article/contents/1346 (檢索日期:2020/07/15)。

英文部分
Acemoglu D. and P. Restrepo (2017), “Robots and Jobs: Evidence from US Labor Markets.” National Bureau of Economic Research Working Paper, 23285.
Acemoglu D. and P. Restrepo (2018), “The Race between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment.” The American Economic Review, 108 (6): 1488–542.
Acemoglu D. and P. Restrepo (2020), “Robots and Jobs: Evidence from US Labor Markets” Journal of Political Economy, 128, (6): 2188-2244.
Agrawal A., J. Gans and A. Goldfarb (2016), “The Simple Economics of Machine Intelligence”, Harvard Business Review.
Agarwal P. K. (2018), “Public Administration Challenges in the World of AI and Bots” Public Administration Review, Vol. 78, Iss. 6, pp. 917–921.
Arntz M., T. Gregory and U. Zierahn (2016), “The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis”OECD Social, Employment and Migration Working Papers , No. 189.
Autor D. and A. Salomons (2017), “Robocalypse Now–Does Productivity Growth Threaten Employment? “ECB Forum on Central Banking, (6):45-118.
Bessen J. E. (2017), “Automation and Jobs: When Technology Boosts Employment.” Boston University School of Law Research Paper 17–09.
Brynjolfsson E., T. Mitchell and D. Rock (2018), “What Can Machines Learn, and What Does it Mean for the Occupations and Industries?” Unpublished.
Chen N., L. Christensen, K. Gallagher, R. Mate and G. Rafert (2016), ” Global Economic Impacts Associated with Artificial Intelligence” Economic Impact Study.
Council of Economic Advisers (2016), “2016 Economic Report of the President.” Washington, D.C. : Council of Economic Advisers.
Dauth W., S. Findeisen, J. Südekum and N. Wößner (2017), “German Robots–The Impact of Industrial Robots on Workers.” CEPR Discussion Papers, 12306.
Diego I. P. and R. Rieder (2018), “Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review” Computers and Electronics in Agriculture 153: 69–81.
Dixon P. B. and M. T. Rimmer (2002), “Dynamic General Equilibrium Modelling for Forecasting and Policy: a Practical Guide and Documentation of MONASH” Contributions to Economic Analysis, North Holland Publishing Company, Amsterdam.
Dorosh, P. A., E. S., Moataz and L. Hans (2003), "Technical Change, Market Incentives And Rural Incomes:A CGE Analysis Of Uganda's Agriculture," 2003 Annual Meeting, Durban, South Africa 25846, International Association of Agricultural Economists.
Felten E. W., M. Raj and R. Seamans (2018), ” A Method to Link Advances in Artificial Intelligence to Occupational Abilities” AEA Papers and Proceedings, 108: 54–57.
Frey C. B. and M. A. Osborne (2017), “The Future of Employment: How Susceptible Are Jobs to Computerisation?” Technological Forecasting and Social Change, 114(C), 254-280.
Ghosh J., B. Shiferaw, A. Sahoo, S. Gbegbelegbe (2016), “A CGE Analysis of the Implications of Technological Change in Indian Agriculture” Electronic Journal DOI: 10.2139/ssrn.3167234.
Graetz G. and G. Michaels (2015), “Robots at Work.” Centre for Economic Performance Discussion Paper, 10477.
Graetz G. and G. Michaels (2018), “Robots at Work.” The Review of Economics and Statistics, 100(5), 753-768.
Harrison W. J. and K. R. Pearson (1996), “Computing Solutions for Large General Equilibrium Models Using GEMPACK,” Computational Economics, 9, 83-127.
Helper S., R. Martins and R. Seamans (2018), “Value Migration and Industry 4.0: Theory, Field Evidence, and Propositions.” Research Network on Industrial Resilience (RENIR) First International Workshop, Collegio Carlo Alberto, Torino, Italy.
Hong C., H. Yang, W. Hwang and J. -D. Lee (2014), “Validation of an R&D-based computable general equilibrium model.” Economic Modelling, 42, 454-463.
Hossainl S. S. and D. Huang (2019), “Technology Implication of Agricultural Sectors in China:A CGE Analysis Based on CHINAGEM Model” Journal of Agricultural Science, Vol. 11, No. 17.
Mann K. and L. Püttmann (2017), “Benign Effects of Automation: New Evidence from Patent Texts,” London: Centre for Economic Policy Research.
Konstantinos G. L., P. Busato, D. Moshou, S. Pearson and D. Bochtis (2018), “Machine Learning in Agriculture: A Review” Sensors 18, 2674.
Bacco M., P. Barsocchi, E. Ferro, A. Gotta and M. Ruggeri (2019), ” The Digitisation of Agriculture: a Survey of Research Activities onSmart Farming” Array, 3-4 , 10000.
Purdy M. and P. Daugherty (2017), “Why artificial intelligence is the future of growth?” Accenture Technology.
Oschinski M. and R. Wyonch (2017), “Future Shock? The Impact of Automation on Canada's Labour Market” Institut C.D. HOWE Institute commentary, NO. 472.
McKinsey Global Institute (2017), “A Future That Works: Automation, Employment, and Productivity.”
McKinsey Global Institute (2018), “Notes from The AI Frontier:Modeling The Impact of AI on The World Economy.”
McKinsey Global Institute (2018), “Notes from The AI Frontier:Insights from Hundreds of Use Cases”
McKinsey Global Institute (2018), “AI to spur economic growth. Information Age”
Pablo J. Zarco-Tejada, N. Hubbard and P. Loudjani (2014), “Precision Agriculture: An Opportunity for EU-Farmers – Potential Support with the CAP 2014-2020” European Parliament's Committee on Agriculture and Rural Development. http://www.europarl.europa.eu/studies
Popa C. (2011), “Adoption of Artificial Intelligence in Agriculture” Bulletin UASVM Agriculture, 68(1) 284-293.
PwC (2018), “The macroeconomic impact of artificial intelligence” https://www.pwc.co.uk/
PwC (2017), “Sizing the prize What’s the real value of AI for your business and how can you capitalise?” https://www.pwc.co.uk/
Russell S. J. and P. Norvig (2020), “Artificial intelligence: A Modern Approach” Prentice Hall, 4th Ed.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70516-
dc.description.abstract隨著科技進步日新月異,除了對人類生活型態帶來改變外,對產業的發展也產生影響,其中人工智慧技術的應用對消費型態與生產模式造成質變。為掌握人工智慧技術的發展與應用,行政院於2017年開始積極推動「臺灣AI行動計畫」等相關政策,民間企業亦積極發展人工智慧的技術應用,啟動產業智慧化。臺灣農業因勞動人口高齡化,面對開放進口農產品與極端氣候之威脅,可透過智慧農業的導入改善農業勞動力不足,並提升效率與品質。臺灣製造業以半導體及資通訊科技產業為主,對於推動智慧製造深具發展利基,且有助於掌握臺灣於全球製造業產業鏈的角色。
為解析臺灣產業發展人工智慧之經濟影響與為產業鏈所帶來之效益,本研究以臺灣的農業及製造業供應鏈為重點,透過由中央研究院永續科學中心與澳洲農業與資源經濟局 (ABARES) 共同研發的動態可計算一般均衡模型及資料庫,根據政府積極投資建構基礎環境,以及民間不斷加強產業跨域創新與高值化的發展趨勢,進行情境模擬分析,評估臺灣農業及製造業發展人工智慧之經濟效益。模擬結果顯示,至2025年,透過農業及製造業的產業價值鏈結關係,臺灣的總生產值將較當年度基線增加0.17~1.37個百分點,實質GDP則較當年度基線多出0.38~2.78個百分點,各產業別的產出成長亦較基線增加,總就業方面則較當年度基線減少0.09~0.53個百分點,且於就業需求均有節省人力的顯著效益,顯見在政府政策推動與民間投資發展智慧農業、智慧製造的策略下,除可帶動我國經濟持續成長外,也可成為各產業因應少子化與缺工的有效調適策略。
zh_TW
dc.description.abstractWith the rapid advancement of science and technology, human life styles are reshaped and industry development is also impacted. The use of artificial intelligence technology on various applications has caused fundamental change on consumer behavior and also manufacturing production pattern. In order to master the development and application of artificial intelligence technology, Taiwan government, the Executive Yuan, has been actively promoting "Taiwan AI Action Plan" and some other related policies from 2017. Moreover, the enterprises are also passionately developing the technology applications by using artificial intelligence which initiate industrial intelligence.
Due to the aging population in Taiwan’s agriculture industry, as well as the threat of foreign agricultural product competition and climate change, the introduction of smart agriculture can resolve labor shortage issues, and also improve production efficiency and product quality. Taiwan’s manufacturing industry is dominated by semiconductor, information and communication technology sectors. Therefore, Taiwan has great advantages on promoting and developing smart manufacturing. This could help Taiwan to be in an important position in the global manufacturing industry supply chain.
In order to understand the impact on the economy and the industry supply chain by the development of artificial intelligence in Taiwan’s industry, this study focuses on Taiwan agriculture and manufacturing supply chain. It uses a dynamically computable general equilibrium model and database which is jointly developed by the Taiwan Center for Sustainability Science and the Australian Bureau of Agricultural and Resource Economics and Science (ABARES). The study is based on the government's active investment on building a basic environment, and the enterprises’ continuous development on strengthening cross-segment innovation and the high-value-add. Then it conducted scenario simulation analysis to evaluate the economic benefits of Taiwan's agricultural and manufacturing industry after applying artificial intelligence.
The simulation results show that by 2025, with the correlated industrial value chain relationship between the agriculture and manufacturing industry, Taiwan’s production value will increase by 0.17 to 1.37 percentage points from the baseline of the year, also the real GDP will be 0.38 to 2.78 percentage points more than the baseline of the year. The output growth of each industry also increases from the baseline, and total employment decreases by 0.09 to 0.53 percentage points from the baseline of the year. The decrease in employment demand indicates it has significant benefits in saving manpower, which is evidence of government policies and enterprises investment. Under the strategy of smart agriculture and smart manufacturing strategies, it not only drives the continuous growth of Taiwan's economy, but also become an effective adjustment strategy for various industries in response to the declining birthrate and labor shortage.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:29:59Z (GMT). No. of bitstreams: 1
U0001-0109202013492300.pdf: 2911475 bytes, checksum: a5e4ec14dae323d05d3294521af4f415 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究方法與步驟 6
第二章 研究背景 8
第一節 臺灣農業與製造業概況 8
第二節 臺灣農業與製造業發展人工智慧之現況 13
第三章 文獻探討 26
第一節 人工智慧之相關文獻 26
一、智慧農業之相關文獻 26
二、智慧製造之相關文獻 30
第二節 研究方法之相關文獻 40
第四章 理論與實證模型 44
第一節 可計算一般均衡模型 44
第二節 臺灣可計算一般均衡模型之建構 45
第三節 研究範圍與資料來源 46
第四節 基線預測與情境設定 46
一、基線預測 46
二、情境設定 47
第五章 模擬結果與實證分析 55
第一節 對臺灣總體經濟之影響 55
第二節 對臺灣農業之經濟影響 62
第三節 對臺灣製造業之經濟影響 72
第六章 結論與建議 85
第一節 結論 85
第二節 政策建議 86
第三節 未來研究方向 89
參考文獻 92
附錄一 產業專家之訪談紀錄彙總 101
附錄二 臺灣政府政策與民間投資人工智慧主要影響之產業部門 103
-
dc.language.isozh_TW-
dc.subject工業4.0zh_TW
dc.subject智慧工廠zh_TW
dc.subject智慧製造zh_TW
dc.subject智慧農業zh_TW
dc.subject可計算一般均衡模型zh_TW
dc.subject人工智慧zh_TW
dc.subjectIndustry 4.0en
dc.subjectSmart Manufacturingen
dc.subjectSmart Agricultureen
dc.subjectArtificial Intelligence (AI)en
dc.subjectComputable General Equilibrium (CGE)en
dc.subjectSmart factoryen
dc.title臺灣農業與製造業發展人工智慧之經濟影響評估zh_TW
dc.titleAn Economy-wide Assessment of the Development of Artificial Intelligence in Taiwan's Agriculture and Manufacturing Sectorsen
dc.typeThesis-
dc.date.schoolyear108-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee徐世勳;詹文男;劉孟俊;林幸君;陳柏琪zh_TW
dc.contributor.oralexamcommitteeShih-Hsun Hsu;Wen-Nan Tsan;Meng-Jun Liu;Hsing-Chun Lin;Po-Chi Chenen
dc.subject.keyword可計算一般均衡模型,人工智慧,智慧農業,智慧製造,智慧工廠,工業4.0,zh_TW
dc.subject.keywordComputable General Equilibrium (CGE),Artificial Intelligence (AI),Smart Agriculture,Smart Manufacturing,Smart factory,Industry 4.0,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202004197-
dc.rights.note未授權-
dc.date.accepted2020-09-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業經濟學系-
dc.date.embargo-liftN/A-
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-108-2.pdf
  未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved