請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70462完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 牟中原(Chung-Yuan Mou) | |
| dc.contributor.author | Ting-Wei Wu | en |
| dc.contributor.author | 吳庭瑋 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:28:43Z | - |
| dc.date.available | 2023-08-15 | |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | (1) Riganti, C.; Mini, E.; Nobili, S., Multidrug Resistance in Cancer: Pharmacological Strategies from Basic Research to Clinical Issues. Frontiers in Oncology 2015, 5, 105.
(2) Kreitman, R. J.; Pastan, I., Immunotoxins for Targeted Cancer Therapy. Advanced Drug Delivery Reviews 1998, 31 (1-2), 53-88. (3) Nabholtz, J.-M.; Slamon, D. In New Adjuvant Strategies for Breast Cancer: Meeting the Challenge of Integrating Chemotherapy and Trastuzumab (Herceptin), Seminars in Oncology, Elsevier: 2001; pp 1-12. (4) Druker, B. J.; Sawyers, C. L.; Kantarjian, H.; Resta, D. J.; Reese, S. F.; Ford, J. M.; Capdeville, R.; Talpaz, M., Activity of a Specific Inhibitor of the Bcr-Abl Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome. New England Journal of Medicine 2001, 344 (14), 1038-1042. (5) Gottesman, M. M., Mechanisms of Cancer Drug Resistance. Annual Review of Medicine 2002, 53 (1), 615-627. (6) Dean, M.; Hamon, Y.; Chimini, G., The Human Atp-Binding Cassette (Abc) Transporter Superfamily. Journal of Lipid Research 2001, 42 (7), 1007-1017. (7) Gottesman, M. M.; Fojo, T.; Bates, S. E., Multidrug Resistance in Cancer: Role of Atp–Dependent Transporters. Nature Reviews Cancer 2002, 2 (1), 48. (8) Gorre, M. E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P. N.; Sawyers, C. L., Clinical Resistance to Sti-571 Cancer Therapy Caused by Bcr-Abl Gene Mutation or Amplification. Science 2001, 293 (5531), 876-880. (9) Pluen, A.; Boucher, Y.; Ramanujan, S.; McKee, T. D.; Gohongi, T.; di Tomaso, E.; Brown, E. B.; Izumi, Y.; Campbell, R. B.; Berk, D. A., Role of Tumor–Host Interactions in Interstitial Diffusion of Macromolecules: Cranial Vs. Subcutaneous Tumors. Proceedings of the National Academy of Sciences 2001, 98 (8), 4628-4633. (10) Jain, R. K., Delivery of Molecular and Cellular Medicine to Solid Tumors1. Advanced Drug Delivery Reviews 2001, 46 (1-3), 149-168. (11) Schuetz, E. G.; Beck, W. T.; Schuetz, J. D., Modulators and Substrates of P-Glycoprotein and Cytochrome P4503a Coordinately up-Regulate These Proteins in Human Colon Carcinoma Cells. Molecular Pharmaceutics 1996, 49 (2), 311-318. (12) Lowe, S. W.; Ruley, H. E.; Jacks, T.; Housman, D. E., P53-Dependent Apoptosis Modulates the Cytotoxicity of Anticancer Agents. Cell 1993, 74 (6), 957-967. (13) Chen, C.-j.; Chin, J. E.; Ueda, K.; Clark, D. P.; Pastan, I.; Gottesman, M. M.; Roninson, I. B., Internal Duplication and Homology with Bacterial Transport Proteins in the Mdr1 (P-Glycoprotein) Gene from Multidrug-Resistant Human Cells. Cell 1986, 47 (3), 381-389. (14) Ueda, K.; Cardarelli, C.; Gottesman, M. M.; Pastan, I., Expression of a Full-Length Cdna for the Human' Mdr1' Gene Confers Resistance to Colchicine, Doxorubicin, and Vinblastine. Proceedings of the National Academy of Sciences 1987, 84 (9), 3004-3008. (15) Roninson, I. B., Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells. Springer Science & Business Media: 2012. (16) Juliano, R. L.; Ling, V., A Surface Glycoprotein Modulating Drug Permeability in Chinese Hamster Ovary Cell Mutants. Biochimica et Biophysica Acta (BBA)-Biomembranes 1976, 455 (1), 152-162. (17) Senior, A. E.; Bhagat, S., P-Glycoprotein Shows Strong Catalytic Cooperativity between the Two Nucleotide Sites. Biochemistry 1998, 37 (3), 831-836. (18) Sauna, Z. E.; Ambudkar, S. V., Evidence for a Requirement for Atp Hydrolysis at Two Distinct Steps During a Single Turnover of the Catalytic Cycle of Human P-Glycoprotein. Proceedings of the National Academy of Sciences 2000, 97 (6), 2515-2520. (19) Childs, S.; Yeh, R. L.; Hui, D.; Ling, V., Taxol Resistance Mediated by Transfection of the Liver-Specific Sister Gene of P-Glycoprotein. Cancer research 1998, 58 (18), 4160-4167. (20) Cole, S.; Bhardwaj, G.; Gerlach, J.; Mackie, J.; Grant, C.; Almquist, K.; Stewart, A.; Kurz, E.; Duncan, A.; Deeley, R., Overexpression of a Transporter Gene in a Multidrug-Resistant Human Lung Cancer Cell Line. Science 1992, 258 (5088), 1650-1654. (21) Loe, D. W.; Deeley, R. G.; Cole, S. P., Characterization of Vincristine Transport by the Mr 190,000 Multidrug Resistance Protein (Mrp): Evidence for Cotransport with Reduced Glutathione. Cancer Research 1998, 58 (22), 5130-5136. (22) Jedlitschky, G.; Leier, I.; Buchholz, U.; Barnouin, K.; Kurz, G.; Keppler, D., Transport of Glutathione, Glucuronate, and Sulfate Conjugates by the Mrp Gene-Encoded Conjugate Export Pump. Cancer research 1996, 56 (5), 988-994. (23) Sun, X.; Luo, Y. P.; Huang, L. W.; Yu, B. Y.; Tian, J. W., A Peptide-Decorated and Curcumin-Loaded Mesoporous Silica Nanomedicine for Effectively Overcoming Multidrug Resistance in Cancer Cells. Rsc Advances 2017, 7 (27), 16401-16409. (24) Wang, J. L.; Ma, W. Z.; Tu, P. F., Synergistically Improved Anti-Tumor Efficacy by Co-Delivery Doxorubicin and Curcumin Polymeric Micelles. Macromolecular Bioscience 2015, 15 (9), 1252-1261. (25) Ma, W. Z.; Guo, Q.; Li, Y.; Wang, X. H.; Wang, J. L.; Tu, P. F., Co-Assembly of Doxorubicin and Curcumin Targeted Micelles for Synergistic Delivery and Improving Anti-Tumor Efficacy. European Journal of Pharmaceutics and Biopharmaceutics 2017, 112, 209-223. (26) Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F. T., Metal Complexes of Curcumin - Synthetic Strategies, Structures and Medicinal Applications. Chemical Society Reviews 2015, 44 (15), 4986-5002. (27) Waranyoupalin, R.; Wongnawa, S.; Wongnawa, M.; Pakawatchai, C.; Panichayupakaranant, P.; Sherdshoopongse, P., Studies on Complex Formation between Curcumin and Hg(Ii) Ion by Spectrophotometric Method: A New Approach to Overcome Peak Overlap. Central European Journal of Chemistry 2009, 7 (3), 388-394. (28) Meiyanto, E.; Putri, D. D. P.; Susidarti, R. A.; Murwanti, R.; Sardjiman; Fitriasari, A.; Husnaa, U.; Purnomo, H.; Kawaichi, M., Curcumin and Its Analogues (Pgv-0 and Pgv-1) Enhance Sensitivity of Resistant Mcf-7 Cells to Doxorubicin through Inhibition of Her2 and Nf-Kb Activation. Asian Pacific Journal of Cancer Prevention 2014, 15 (1), 179-184. (29) Aggarwal, B. B., Nuclear Factor-Kappab: The Enemy Within. Cancer Cell 2004, 6 (3), 203-208. (30) Ganta, S.; Amiji, M., Coadministration of Paclitaxel and Curcumin in Nanoemulsion Formulations to Overcome Multidrug Resistance in Tumor Cells. Molecular Pharmaceutics 2009, 6 (3), 928-939. (31) Aggarwal, B. B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R. A.; Bueso-Ramos, C. E.; Price, J. E., Curcumin Suppresses the Paclitaxel-Induced Nuclear Factor-Kappab Pathway in Breast Cancer Cells and Inhibits Lung Metastasis of Human Breast Cancer in Nude Mice. Clinical Cancer Research 2005, 11 (20), 7490-7498. (32) Sadzuka, Y.; Nagamine, M.; Toyooka, T.; Ibuki, Y.; Sonobe, T., Beneficial Effects of Curcumin on Antitumor Activity and Adverse Reactions of Doxorubicin. International Journal of Pharmaceutics 2012, 432 (1-2), 42-49. (33) Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y., Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. Small 2009, 5 (12), 1408-1413. (34) Wu, S. H.; Mou, C. Y.; Lin, H. P., Synthesis of Mesoporous Silica Nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875. (35) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable Cds Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459. (36) Tang, F. Q.; Li, L. L.; Chen, D., Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials 2012, 24 (12), 1504-1534. (37) Lin, Y.-S.; Tsai, C.-P.; Huang, H.-Y.; Kuo, C.-T.; Hung, Y.; Huang, D.-M.; Chen, Y.-C.; Mou, C.-Y., Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers. Chemistry of Materials 2005, 17 (18), 4570-4573. (38) Wu, S.-H.; Hung, Y.; Mou, C.-Y., Mesoporous Silica Nanoparticles as Nanocarriers. Chemical Communications 2011, 47 (36), 9972-9985. (39) Liu, Y. H.; Lin, H. P.; Mou, C. Y., Direct Method for Surface Silyl Functionalization of Mesoporous Silica. Langmuir 2004, 20 (8), 3231-3239. (40) Batist, G.; Tulpule, A.; Sinha, B.; Katki, A.; Myers, C.; Cowan, K., Overexpression of a Novel Anionic Glutathione Transferase in Multidrug-Resistant Human Breast Cancer Cells. Journal of Biological Chemistry 1986, 261 (33), 15544-15549. (41) Chang, C.-L.; Fogler, H. S., Controlled Formation of Silica Particles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Microemulsions. Langmuir 1997, 13 (13), 3295-3307. (42) Finnie, K. S.; Bartlett, J. R.; Barbé, C. J.; Kong, L., Formation of Silica Nanoparticles in Microemulsions. Langmuir 2007, 23 (6), 3017-3024. (43) Fan, L.; Li, F.; Zhang, H.; Wang, Y.; Cheng, C.; Li, X.; Gu, C.-h.; Yang, Q.; Wu, H.; Zhang, S., Co-Delivery of Pdtc and Doxorubicin by Multifunctional Micellar Nanoparticles to Achieve Active Targeted Drug Delivery and Overcome Multidrug Resistance. Biomaterials 2010, 31 (21), 5634-5642. (44) Liu, J.; Jiang, X.; Ashley, C.; Brinker, C. J., Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery. Journal of the American Chemical Society 2009, 131 (22), 7567-7569. (45) Beijnen, J.; Van der Houwen, O.; Underberg, W., Aspects of the Degradation Kinetics of Doxorubicin in Aqueous Solution. International Journal of Pharmaceutics 1986, 32 (2-3), 123-131. (46) He, X.; Hai, L.; Su, J.; Wang, K.; Wu, X., One-Pot Synthesis of Sustained-Released Doxorubicin Silica Nanoparticles for Aptamer Targeted Delivery to Tumor Cells. Nanoscale 2011, 3 (7), 2936-2942. (47) Lin, C. H.; Chang, J. H.; Yeh, Y. Q.; Wu, S. H.; Liu, Y. H.; Mou, C. Y., Formation of Hollow Silica Nanospheres by Reverse Microemulsion. Nanoscale 2015, 7 (21), 9614-9626. (48) Lin, C.-H.; Chang, J.-H.; Yeh, Y.-Q.; Wu, S.-H.; Liu, Y.-H.; Mou, C.-Y., Formation of Hollow Silica Nanospheres by Reverse Microemulsion. Nanoscale 2015, 7 (21), 9614-9626. (49) Wang, J.; Wei, D.; Jiang, B.; Liu, T.; Ni, J.; Zhou, S., Two Copper (Ii) Complexes of Curcumin Derivatives: Synthesis, Crystal Structure and in Vitro Antitumor Activity. Transition Metal Chemistry 2014, 39 (5), 553-558. (50) Taebnia, N.; Morshedi, D.; Yaghmaei, S.; Aliakbari, F.; Rahimi, F.; Arpanaei, A., Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles Inhibit Alpha-Synuclein Fibrillation and Reduce Its Cytotoxicity-Associated Effects. Langmuir 2016, 32 (50), 13394-13402. (51) Gao, C.; Tang, F.; Gong, G. Y.; Zhang, J. X.; Hoi, M. P. M.; Lee, S. M. Y.; Wang, R. B., Ph-Responsive Prodrug Nanoparticles Based on a Sodium Alginate Derivative for Selective Co-Release of Doxorubicin and Curcumin into Tumor Cells. Nanoscale 2017, 9 (34), 12533-12542. (52) Maeda, H., The Enhanced Permeability and Retention (Epr) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting. Advances in Enzyme Regulation 2001, 41 (1), 189-207. (53) Gao, C.; Tang, F.; Gong, G.; Zhang, J.; Hoi, M. P.; Lee, S. M.; Wang, R., Ph-Responsive Prodrug Nanoparticles Based on a Sodium Alginate Derivative for Selective Co-Release of Doxorubicin and Curcumin into Tumor Cells. Nanoscale 2017, 9 (34), 12533-12542. (54) Graf, C.; Gao, Q.; Schutz, I.; Noufele, C. N.; Ruan, W. T.; Posselt, U.; Korotianskiy, E.; Nordmeyer, D.; Rancan, F.; Hadam, S.; Vogt, A.; Lademann, J.; Haucke, V.; Ruhl, E., Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells. Langmuir 2012, 28 (20), 7598-7613. (55) Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Understanding Biophysicochemical Interactions at the Nano–Bio Interface. Nature Materials 2009, 8, 543. (56) Albanese, A.; Tang, P. S.; Chan, W. C. W., The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering 2012, 14 (1), 1-16. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70462 | - |
| dc.description.abstract | 多重抗藥性(multidrug resistance,MDR)是目前臨床癌症治療的一項重大阻礙,因其限制了化學治療的整體效果。協同性藥物的共同傳遞最近已成為一有前景的策略以克服這項艱鉅的問題。然而,協同性藥物通常具有不同的固有特性(例如:溶解性和親脂性),需要個別使用不同的載體或溶劑,因此限制了同時遞送的可行性。在我們的研究中,開發了兩種大小均勻且分散性良好的二氧化矽奈米複合粒子,並證明它們可用於共同傳遞親水性抗癌藥物阿黴素(Doxorubicin,DOX)和疏水性化學增敏劑薑黃素(Curcumin,Cur)這兩種藥物,以實現協同性增強癌症治療的效果。
第一種用於共同傳遞DOX和Cur的二氧化矽奈米複合粒子(SSNs)是利用油包二甲基亞碸(DMSO)的微乳液系統,並結合氟化鈉(NaF)催化的溶膠 - 凝膠化過程進行合成。高效液相層析儀的鑑定顯示DOX和Cur能成功地共同被裝載於SSNs(DOX/Cur@SSNs),並且具有高包覆效率和藥物持續釋放的行為。藉由形成水溶性較佳的金屬與Cur之配位化合物,可以顯著地提高Cur在此奈米複合載體的負載量至45倍以上。而DOX/Cur@SSNs對DOX的負載能力藉由修飾帶負電荷的矽烷在SSNs表面上,亦能被有效地提高。此外,我們可以把SSNs的直徑調控在25 nm以下,以利用高滲透長滯留效應(EPR)增加奈米粒子積累在生物體內腫瘤的可能性。 第二種奈米複合載體為擴孔性二氧化矽奈米粒子(exMSN),其是利用表面活性劑作為孔洞材料的模板,並結合氨水催化的溶膠 - 凝膠化過程進行合成。我們進而將含氨基和羧基的矽烷修飾在exMSN上以獲得具有高DOX和Cur負載量的奈米複合載體(DOX/Cur@NH2/COOH-exMSN),並且具有可調控的藥物釋放行為。此外,為了評估DOX/Cur@NH2/COOH-exMSNs的協同性抗癌功效,我們進行了體外和體內研究,包括細胞攝取、細胞毒性和生物體內分佈。結果顯示,DOX/Cur@NH2/COOH-exMSNs可顯著增強在人類乳腺癌多重抗藥性細胞 (MCF7/Adr) 的抗癌效果。 綜合以上所述,我們成功地開發了能共同運輸DOX和Cur的二氧化矽奈米複合載體DOX/Cur@SSNs,其材料大小可被調控且藥物裝載方法簡便;另外,也開發了具高藥物負載量和pH感應性藥物釋放機制的DOX/Cur@NH2/COOH-exMSNs。我們期望這兩種可同時裝載DOX和Cur的二氧化矽奈米複合載體可以被繼續發展並應用其協同性抗癌作用解決MDR的難題。 | zh_TW |
| dc.description.abstract | Multidrug resistance (MDR) is a problem that limits the overall effectiveness of chemotherapeutic treatments. Co-delivery of synergistic drugs has recently emerged as a promising tool to overcome this obstacle. However, therapeutic drugs usually have distinct intrinsic properties such as solubility and lipophilicity that require the use of various carriers or solvents and thus restricts the feasibility of simultaneous delivery. In this study, we have developed two kinds of uniform and well-dispersed silica nanohybrids and demonstrated each can be utilized for co-delivering two drugs: the hydrophilic chemotherapeutic drug doxorubicin (DOX) and a hydrophobic chemosensitizer curcumin (Cur), to achieve a synergistic enhancement of cancer therapy.
The first nanohybrid for DOX and Cur co-delivery is a solid silica nanoparticle (SSN), synthesized via a sodium fluoride (NaF)-catalyzed sol-gel process combined with a dimethyl sulfoxide (DMSO)-in-oil microemulsion. We use HPLC technique to successfully show the co-loading of DOX and Cur in SSNs (DOX/Cur@SSNs) with high encapsulation efficiency and sustained-release behavior. The loading content of Cur was significantly elevated over 45 times through the formation of soluble metal curcumin complexes. Furthermore, the drug loading capacity of DOX/Cur@SSNs for DOX was effectively increased by modifying the SSNs surface with a negatively charged silane. Moreover, the diameter of SSNs can be controlled to below 25 nm to increase the in vivo tumor accumulation via the enhanced permeability and retention (EPR) effect. A second type of nanohybrid, pore-expanded mesoporous silica nanoparticle (exMSN), was synthesized via an ammonia-catalyzed sol-gel process combined with a surfactant-templating strategy. Here, we further modified exMSNs with amino- and carboxyl-containing silanes to obtain high DOX/Cur loading nanoparticles (DOX/Cur@NH2/COOH-exMSNs) with desired drug releasing profiles. In addition, to evaluate the synergistic anticancer efficacy of DOX/Cur@NH2/COOH-exMSNs, both in vitro and in vivo studies, such as cell uptake, cytotoxicity and biodistribution were conducted. The results have demonstrated that DOX/Cur@NH2/COOH-exMSNs could significantly enhance tumor therapeutic effects in MDR human breast carcinoma MCF7/Adr cells. In conclusion, an easy size-controlled and facile drug-loading approach was developed for the synthesis of DOX/Cur@SSNs, while a high drug-loading capacity and pH-responsive release behavior were found in DOX/Cur@NH2/COOH-exMSNs. We envision that both two types of the DOX/Cur-loaded silica nanohybrids can be carried forward and applied against MDR by synergistic anticancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:28:43Z (GMT). No. of bitstreams: 1 ntu-107-R05223203-1.pdf: 11103262 bytes, checksum: 8118e42d6abc3af9ad3e728c4955c6dd (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 II Abstract IV Table of Contents VII List of Figures XII List of Tables XVII List of Abbreviations XIX Chapter 1 Introduction 1 1.1 Multidrug resistance (MDR) in anticancer therapy 1 1.1.1 Evolution of anticancer chemotherapy- the emergence of MDR 1 1.1.2 Cellular mechanisms of MDR 2 1.1.3 ATP-dependent transporters 5 1.1.4 Curcumin (Cur) as a natural chemosensitizer for synergism against MDR 10 1.1.5 Co-delivery of doxorubicin (DOX) and curcumin (Cur) for synergism against MDR cells and its challenges 13 1.2 Applications of Mesoporous Silica Nanoparticles (MSNs) 16 Chapter 2 Experimental section 24 2.1 Materials 24 2.2 Cell line and cell culture 25 2.3 Animal 26 2.4 Characterization of the silica nanohybrids 26 2.5 Experimental methods of nanohybrids DOX/Cur@SSNs 28 2.5.1 Preparation of various synthetic microemulsion systems 28 2.6 Experimental methods of nanohybrids DOX/Cur@NH2/COOH-exMSNs 29 2.6.1 Synthesis procedure of NH2/COOH-exMSNs 29 2.6.2 Co-loading of DOX and Cur in AAS/EDTAS-exMSN 31 2.6.3 Loading capacity and encapsulation efficiency 32 2.6.4 Drug release study 32 2.6.5 Cellular uptake 33 2.6.6 Cytotoxicity assay 33 2.6.7 Western blotting analysis 34 2.6.8 In vivo experiments 35 Chapter 3 Solid silica nanoparticles (SSNs)-based system 36 3.1 Application of catalysts on the sol-gel process 37 3.2 Development and optimization of synthetic microemulsion systems on SSNs ……………………………………………………………………………….38 3.3 Improvement for the uniformity of SSNs by time-divided introduction of silica source 45 3.4 Synthesis and optimization of silica nanohybrid Cur@SSNs 48 3.4.1 Synthesis and engineering of silica nanohybrid Cur@SSNs 48 3.4.2 Optimization for dispersity of silica nanohybrid Cur@SSNs 52 3.4.3 Optimization for drug loading capacity of silica nanohybrid Cur@SSNs 56 3.5 Synthesis and optimization of silica nanohybrid DOX@SSNs 62 3.5.1 Synthesis and engineering of silica nanohybrid DOX@SSNs 62 3.5.2 Size-controlling of DOX@SSNs 63 3.5.3 Optimization for drug loading capacity of silica nanohybrids DOX@SSNs by electrostatic attractive force 69 3.5.4 Sustained drug release 70 3.6 Synthesis and optimization of DOX/Cur@SSNs 72 Chapter 4 Pore-expanded MSNs (exMSNs)- based system 74 4.1 Synthesis and engineering of functional silica nanohybrid DOX/Cur@NH2/COOH-exMSNs 74 4.1.1 The concept of synthesis for functional silica nanohybrid DOX/Cur@NH2/COOH-exMSNs 74 4.1.2 Preparation and characterization of functional silica nanohybrids DOX/Cur@NH2/COOH-exMSNs 77 4.1.3 The synthetic control for chemical modification of the internal and external surfaces in mesoporous silica nanohybrids. 80 4.2 Co-loading doxorubicin (DOX) and curcumin (Cur) in functional silica nanohybrids for synergism 82 4.2.1 The process and condition of co-loading DOX and Cur 82 4.2.2 Characterization for the DOX/Cur co-loaded nanohybrids 83 4.3 pH-Responsive silica nanohybrids based on functional groups for selective co-release of doxorubicin and curcumin 86 4.4 In vitro study of the functional silica nanohybrids for bio-applications 89 4.4.1 Cellular uptake 89 4.4.2 In vitro cytotoxicity 91 4.4.3 Intracellular drug release 95 4.4.4 Reversal mechanism of MDR 97 4.5 In vivo study of the functional silica nanohybrids for bio-application 98 4.5.1 Bio-distribution 98 Chapter 5 Conclusion 101 References 104 | |
| dc.language.iso | en | |
| dc.subject | pH-感應性 | zh_TW |
| dc.subject | 中孔洞二氧化矽奈米粒子 | zh_TW |
| dc.subject | 化療藥物阿黴素 | zh_TW |
| dc.subject | 協同性抗癌治療 | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 多重抗藥性 | zh_TW |
| dc.subject | 共同傳遞藥物系統 | zh_TW |
| dc.subject | curcumin | en |
| dc.subject | pH-responsive | en |
| dc.subject | multidrug resistance | en |
| dc.subject | co-delivery system | en |
| dc.subject | synergistic anticancer therapy | en |
| dc.subject | doxorubicin | en |
| dc.subject | mesoporous silica nanoparticles | en |
| dc.title | 開發功能性二氧化矽奈米複合載體應用於協同性抗癌治療 | zh_TW |
| dc.title | Developing Functional Silica Nanohybrid Co-carrier for Synergistic Anticancer Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳思翰(Si-Han Wu),陳培菱(Peilin Chen) | |
| dc.subject.keyword | 中孔洞二氧化矽奈米粒子,pH-感應性,多重抗藥性,共同傳遞藥物系統,協同性抗癌治療,化療藥物阿黴素,薑黃素, | zh_TW |
| dc.subject.keyword | mesoporous silica nanoparticles,pH-responsive,multidrug resistance,co-delivery system,synergistic anticancer therapy,doxorubicin,curcumin, | en |
| dc.relation.page | 113 | |
| dc.identifier.doi | 10.6342/NTU201802737 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 10.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
