Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorJing-Rong Chengen
dc.contributor.author鄭靖融zh_TW
dc.date.accessioned2021-06-17T04:27:18Z-
dc.date.available2018-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation[1] C. W. Tang, 'Two‐layer organic photovoltaic cell,' Applied Physics Letters, vol. 48, no. 2, pp. 183-185, 1986.
[2] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, 'Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions,' (in English), Science, vol. 270, no. 5243, pp. 1789-1791, Dec 15 1995.
[3] T. Kietzke, 'Recent Advances in Organic Solar Cells,' Advances in OptoElectronics, vol. 2007, pp. 1-15, 2007.
[4] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, 'Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,' (in English), Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, Mar 2014.
[5] V. Gonzalez-Pedro et al., 'General working principles of CH3NH3PbX3 perovskite solar cells,' Nano Lett, vol. 14, no. 2, pp. 888-93, Feb 12 2014.
[6] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,' (in English), Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-+, May 6 2009.
[7] H. S. Kim et al., 'Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,' Sci Rep, vol. 2, p. 591, 2012.
[8] A. Mei et al., 'A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability,' science, vol. 345, no. 6194, 2014.
[9] P. P. Boix, S. Agarwala, T. M. Koh, N. Mathews, and S. G. Mhaisalkar, 'Perovskite Solar Cells: Beyond Methylammonium Lead Iodide,' The Journal of Physical Chemistry Letters, vol. 6, no. 5, pp. 898-907, 2015/03/05 2015.
[10] M. Liu, M. B. Johnston, and H. J. Snaith, 'Efficient planar heterojunction perovskite solar cells by vapour deposition,' Nature, vol. 501, no. 7467, pp. 395-8, Sep 19 2013.
[11] Q. Chen et al., 'Planar heterojunction perovskite solar cells via vapor-assisted solution process,' J Am Chem Soc, vol. 136, no. 2, pp. 622-5, Jan 15 2014.
[12] M. Xiao et al., 'A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,' Angew Chem Int Ed Engl, vol. 53, no. 37, pp. 9898-903, Sep 8 2014.
[13] M. Knupfer, 'Exciton binding energies in organic semiconductors,' Applied Physics A, vol. 77, no. 5, pp. 623-626, 2003.
[14] A. Miyata et al., 'Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites,' Nature Physics, vol. 11, no. 7, pp. 582-587, 2015.
[15] L. Lu and L. Yu, 'Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it,' Adv Mater, vol. 26, no. 26, pp. 4413-30, Jul 9 2014.
[16] A. Jain and A. Kapoor, 'A new approach to study organic solar cell using Lambert W-function,' Solar Energy Materials and Solar Cells, vol. 86, no. 2, pp. 197-205, 2005.
[17] A. Cheknane, H. S. Hilal, F. Djeffal, B. Benyoucef, and J.-P. Charles, 'An equivalent circuit approach to organic solar cell modelling,' Microelectronics Journal, vol. 39, no. 10, pp. 1173-1180, 2008.
[18] H. Hoppe and N. S. Sariciftci, 'Organic solar cells: An overview,' Journal of Materials Research, vol. 19, no. 07, pp. 1924-1945, 2011.
[19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, 'Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells,' Journal of Applied Physics, vol. 94, no. 10, pp. 6849-6854, 2003.
[20] E. A. Katz et al., 'Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions,' Journal of Applied Physics, vol. 90, no. 10, pp. 5343-5350, 2001.
[21] J. Rostalski and D. Meissner, 'Monochromatic versus solar efficiencies of organic solar cells,' (in English), Solar Energy Materials and Solar Cells, vol. 61, no. 1, pp. 87-95, Feb 15 2000.
[22] N. Jalili and K. Laxminarayana, 'A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,' Mechatronics, vol. 14, no. 8, pp. 907-945, 2004.
[23] J. Tauc, J. Tauc, Ed. Amorphous and liquid semiconductor. Plenum Press, 1974, p. 159.
[24] H. Hertz, 'Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung,' Annalen der Physik und Chemie, vol. 267, no. 8, pp. 983-1000, 1887.
[25] A. Einstein, 'Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,' Annalen der physik, vol. 322, pp. 132-148, 1905.
[26] L. Yang et al., 'Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,' Phys Chem Chem Phys, vol. 14, no. 2, pp. 779-89, Jan 14 2012.
[27] Q. Zhang, Y. Sun, W. Xu, and D. Zhu, 'Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions,' Energy & Environmental Science, vol. 5, no. 11, 2012.
[28] B. Fang, H. Zhou, and I. Honma, 'Lithium doping of pentacene for electrochemical hydrogen storage,' Applied Physics Letters, vol. 89, no. 2, 2006.
[29] J. B. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. J. Jiang, and S. Yanagida, 'Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells,' (in English), Journal of the American Chemical Society, vol. 130, no. 4, pp. 1258-1263, Jan 30 2008.
[30] H. J. Snaith and M. Grätzel, 'Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells,' Applied Physics Letters, vol. 89, no. 26, 2006.
[31] A. Abate et al., 'Lithium salts as 'redox active' p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells,' Phys Chem Chem Phys, vol. 15, no. 7, pp. 2572-9, Feb 21 2013.
[32] R. Q. Zhang, C. S. Lee, and S. T. Lee, 'The electronic structures and properties of Alq3 and NPB molecules in organic light emitting devices: Decompositions of density of states,' The Journal of Chemical Physics, vol. 112, no. 19, pp. 8614-8620, 2000.
[33] S. A. Van Slyke, C. H. Chen, and C. W. Tang, 'Organic electroluminescent devices with improved stability,' Applied Physics Letters, vol. 69, no. 15, pp. 2160-2162, 1996.
[34] H. You, Y. Dai, Z. Zhang, and D. Ma, 'Improved performances of organic light-emitting diodes with metal oxide as anode buffer,' Journal of Applied Physics, vol. 101, no. 2, 2007.
[35] T. Matsushima, G.-H. Jin, and H. Murata, 'Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,' Journal of Applied Physics, vol. 104, no. 5, 2008.
[36] Y. B. Zhao et al., 'Transition metal oxides on organic semiconductors,' (in English), Organic Electronics, vol. 15, no. 4, pp. 871-877, Apr 2014.
[37] R. T. White, E. S. Thibau, and Z. H. Lu, 'Interface Structure of MoO3 on Organic Semiconductors,' Sci Rep, vol. 6, p. 21109, Feb 16 2016.
[38] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, 'Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,' Applied Physics Letters, vol. 95, no. 12, 2009.
[39] F. Wang, X. Qiao, T. Xiong, and D. Ma, 'The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes,' Organic Electronics, vol. 9, no. 6, pp. 985-993, 2008.
[40] H. Lee et al., 'The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl- 4,4′-diamine interfaces,' Applied Physics Letters, vol. 93, no. 4, 2008.
[41] T. Matsushima, Y. Kinoshita, and H. Murata, 'Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,' Applied Physics Letters, vol. 91, no. 25, 2007.
[42] C.-I. Wu, C.-T. Lin, G.-R. Lee, T.-Y. Cho, C.-C. Wu, and T.-W. Pi, 'Electronic and chemical properties of molybdenum oxide doped hole injection layers in organic light emitting diodes,' Journal of Applied Physics, vol. 105, no. 3, 2009.
[43] W.-J. Shin, J.-Y. Lee, J. C. Kim, T.-H. Yoon, T.-S. Kim, and O.-K. Song, 'Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,' Organic Electronics, vol. 9, no. 3, pp. 333-338, 2008.
[44] Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, and A. K. Jen, 'Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer,' Adv Mater, vol. 28, no. 30, pp. 6478-84, Aug 2016.
[45] D. Liu and T. L. Kelly, 'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature Photonics, vol. 8, no. 2, pp. 133-138, 2013.
[46] S. S. Shin et al., 'High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C,' Nat Commun, vol. 6, p. 7410, Jun 22 2015.
[47] H. Zhou et al., 'Photovoltaics. Interface engineering of highly efficient perovskite solar cells,' Science, vol. 345, no. 6196, pp. 542-6, Aug 1 2014.
[48] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, 'Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency,' Energy Environ. Sci., vol. 7, no. 3, pp. 1142-1147, 2014.
[49] H. Zhang et al., 'New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer,' Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8724-8733, 2016.
[50] D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, and C. Li, 'High efficiency flexible perovskite solar cells using superior low temperature TiO2,' Energy & Environmental Science, vol. 8, no. 11, pp. 3208-3214, 2015.
[51] S. van Reenen, M. Kemerink, and H. J. Snaith, 'Modeling Anomalous Hysteresis in Perovskite Solar Cells,' J Phys Chem Lett, vol. 6, no. 19, pp. 3808-14, Oct 1 2015.
[52] D. Yang et al., 'Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells,' Energy & Environmental Science, vol. 9, no. 10, pp. 3071-3078, 2016.
[53] W. Tress and O. Inganäs, 'Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped current–voltage characteristics,' Solar Energy Materials and Solar Cells, vol. 117, pp. 599-603, 2013.
[54] H. S. Yoo and N. G. Park, 'Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells,' (in English), Solar Energy Materials and Solar Cells, vol. 179, pp. 57-65, Jun 1 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70398-
dc.description.abstract鈣鈦礦太陽能電池具有製作成本低、吸收波段寬、載子束縛能小、電子電洞擴散長度長等優點,吸引許多研究團隊投入研究,鈣鈦礦已被廣泛應用於新世代光伏元件。近年來,穿戴式與攜帶式元件需求日益漸增,因此我們欲開發高效率以及高穩定性的可撓式鈣鈦礦太陽能電池。
本篇論文第一部分,探討低溫二氧化鈦(TiO2)奈米顆粒製程取代高溫TiO2燒結製程。首先優化低溫TiO2奈米顆粒製程,調變不同溫度控制TiO2奈米顆粒成長速度,低溫TiO2奈米顆粒大小約為20 – 30 nm,整個元件製程溫度可以控制於150 °C以下。比較高低溫製程元件各項特性,並以掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)進行薄膜分析,低溫TiO2製程應用於玻璃基板上方效率約15.03 %,略低於高溫TiO2製程(約15.65 %)。將低溫TiO2製程應用於軟性基板上方,效率可達14.68 %。為了優化元件表現,以HMDS進行基板修飾,優化過後元件應用於軟性基板上方,效率可提升至16.24 %。為了更進一步了解軟性元件的可行性,我們進行機械穩定性測試,經過500次彎曲,元件效率維持於原先的88 %。
第二部分中,為了解決第一部分鈣鈦礦電池所產生的遲滯現象,我們選用NPB/MoO3取代Spiro作為電洞傳輸層(HTL)材料,減緩遲滯現象發生。蒸鍍不同厚度NPB材料,並且探討量測時間以及元件各項特性隨著NPB材料的厚度增加而改變。比較以Spiro作為HTL以及NPB/MoO3作為HTL的鈣鈦礦太陽能電池遲滯現象的差異,以NPB/MoO3取代Spiro作為電洞傳輸材料,明顯減緩遲滯現象指數,以Spiro作為電洞傳輸層元件的遲滯現象指數約為21.94 %,以NPB/MoO3作為電洞傳輸層元件的遲滯現象指數大幅下降至1.99 %。
zh_TW
dc.description.abstractPerovskite have a great number of advantages, including low production cost, broad band absorption, low exciton binding energy, and long carrier diffusion length. Numerous research groups devoted themselves to this promising material and its applications, especially perovskite solar cells (PSCs). So far, there are some issues that hinder PSCs’ application and commercialization such as hysteresis effect, process temperature and instability. Herein, we employ low-temperature-processed TiO2 and NPB/MoO3 to replace compact layer TiO2 and humidity-sensitive Spiro-OMeTAD, respectively.
In the first part of this thesis, we synthesize low temperature processed (LTP) TiO2 nanoparticles as electron transport layer (ETL) to replace compact TiO2 layer which required high temperature sintering process (HTP). First, we optimize LTP TiO2 nanoparticles through controlling nucleation temperature. The optimized size of LTP TiO2 nanoparticles is about 20-30 nm. With LTP TiO2 nanoparticles, all processed temperature on perovskite solar cells can be controlled under 150 °C. The morphology and roughness of LTP TiO2 nanoparticles and HTP TiO2 are investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The best power conversion efficiency (PCE) on ITO/glass substrate is 15.03 % which is slightly less than HTP (~15.65 %). The PCE of devices on the ITO/PEN substrate is 14.68 % and that of devices on HDMS-treated substrate is over 16 %. To further explore the feasibility of our flexible devices, we analyze the mechanical stability of PSC on PEN. After 500 bending test, our devices maintain 88 % of original efficiency.
In the second part, NPB/MoO3 are used to replace Spiro as hole transport layer (HTL). The hysteresis index (HI) of the device using Spiro as HTL is 21.94 % and that of the device using NPB/MoO3 as HTL is 1.99 %. Using NPB/MoO3 as HTL can eliminate hysteresis effect. Besides, light soaking effect was observable in NPB/MoO3 devices and X-ray/ultraviolet photoemission spectroscopy (XPS/UPS) were used to study its mechanisms in details.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:27:18Z (GMT). No. of bitstreams: 1
ntu-107-R05941021-1.pdf: 2600593 bytes, checksum: 9d8cbe1cc7ed335915752373a143c421 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 2
致謝 3
中文摘要 4
Abstract 5
目錄 7
圖目錄 10
表目錄 14
第1章 緒論與介紹 15
1.1 前言 15
1.2 太陽能電池 15
1.2.1 太陽能電池發展 15
1.3 鈣鈦礦太陽能電池 18
1.3.1 鈣鈦礦太陽能電池 18
1.3.2 鈣鈦礦太陽能電池光電轉換機制 23
1.4 太陽能電池等效電路與參數介紹 25
1.4.1 太陽能電池等效電路 25
1.4.2 太陽能電池參數介紹 26
第2章 研究方法 30
2.1 製程儀器 30
2.1.1 氮氣手套箱與太陽能量測模擬器 30
2.1.2 真空蒸鍍機 31
2.1.3 離心機 32
2.2 量測分析 32
2.2.1 掃描式電子顯微鏡(SEM) 32
2.2.2 原子力顯微鏡(AFM) 33
2.2.3 紫外-可見光光譜儀 34
2.2.4 紫外光與X射線光電子能譜(UPS & XPS) 35
2.3 實驗材料介紹 36
2.3.1 銦錫氧化物(ITO) 36
2.3.2 軟性基板 36
2.3.3 電子傳輸層材料 37
2.3.4 主動層材料 38
2.3.5 電洞傳輸層材料 39
2.3.6 上電極材料 42
2.4 實驗步驟 43
2.4.1 元件製作流程圖 43
2.4.2 元件製程步驟 43
第3章 溶液製程鈣鈦礦太陽能電池應用於軟性基板 49
3.1 研究動機 49
3.2 低溫TiO2奈米顆粒製程元件優化 50
3.3 高溫燒結製程與低溫TiO2奈米顆粒製程之比較 54
3.4 低溫TiO2奈米顆粒製程應用於軟性基板 58
3.4.1 HMDS改善ITO基板介面特性 59
3.4.2 HMDS修飾ITO基板應用於軟性基板比較 65
3.4.3 元件彎曲穩定度測試 66
3.5 結論 69
第4章 微遲滯現象鈣鈦礦太陽能電池 70
4.1 研究動機 70
4.2 以NPB/MoO3 作為電洞傳輸層 71
4.2.1 優化電洞傳輸層 71
4.2.2 遲滯現象 83
4.3 總結 85
第5章 總結與未來展望 87
5.1 總結 87
5.2 未來展望 88
參考文獻 90
dc.language.isozh-TW
dc.subject電洞傳輸層zh_TW
dc.subject遲滯現象zh_TW
dc.subject二氧化鈦zh_TW
dc.subject可撓性鈣鈦礦太陽能電池zh_TW
dc.subject低溫製程zh_TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subjectHysteresis effecten
dc.subjectLow temperature processen
dc.subjectFlexible perovskite solar cellsen
dc.subjectPerovskite solar cellen
dc.subjecthole transport layeren
dc.subjectTiO2en
dc.title微遲滯現象鈣鈦礦太陽能電池及應用於軟性電子元件zh_TW
dc.titleFabrication of nearly hysteresis-free perovskite solar cells and its application in flexible electronicsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳育任(Yuh-Renn Wu),陳奕君(I-Chun Cheng),陳美杏(Mei-Hsin Chen)
dc.subject.keyword鈣鈦礦太陽能電池,低溫製程,可撓性鈣鈦礦太陽能電池,二氧化鈦,遲滯現象,電洞傳輸層,zh_TW
dc.subject.keywordPerovskite solar cell,Low temperature process,Flexible perovskite solar cells,TiO2,Hysteresis effect,hole transport layer,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201803318
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved