Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70393
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音
dc.contributor.authorWen-Hui Luen
dc.contributor.author呂文惠zh_TW
dc.date.accessioned2021-06-17T04:27:12Z-
dc.date.available2023-10-03
dc.date.copyright2018-10-03
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation1 De Kouchkovsky, I. & Abdul-Hay, M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer Journal 6, e441 (2016).
2 Saultz, J. & Garzon, R. Acute Myeloid Leukemia: A Concise Review. Journal of Clinical Medicine 5, 33 (2016).
3 Dombret, H. & Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 127, 53 (2016).
4 Bagrintseva, K., Schwab, R., Kohl, T. M., Schnittger, S., Eichenlaub, S., Ellwart, J. W., Hiddemann, W. & Spiekermann, K. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD–transformed hematopoietic cells. Blood 103, 2266-2275 (2004).
5 Wander, S. A., Levis, M. J. & Fathi, A. T. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Therapeutic Advances in Hematology 5, 65-77 (2014).
6 Levis, M. Midostaurin approved for FLT3-mutated AML. Blood (2017).
7 Meshinchi, S. & Appelbaum, F. R. Structural and functional Alterations of FLT3 in Acute Myeloid Leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 4263-4269 (2009).
8 Stirewalt, D. L. & Radich, J. P. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3, 650-665 (2003).
9 Choi, Y., Kim, H. J., Park, B. H., Min, W. S. & Kim, C. C. Novel mutations in the FLT3 gene in adult patients with refractory acute myeloid leukemia. Leukemia 19, 141-143 (2004).
10 Liang, D. C., Shih, L. Y., Hung, I. J., Yang, C. P., Chen, S. H., Jaing, T. H., Liu, H. C., Wang, L. Y. & Chang, W. H. FLT3-TKD mutation in childhood acute myeloid leukemia. Leukemia 17, 883-886 (0000).
11 Fathi, A. T., Blonquist, T. M., Levis, M. J., Hernandez, D., Ballen, K. K., Avigan, D. E., Joyce, R., McMasters, M., Logan, E., Hobbs, G. S., Brunner, A. M., Connolly, C., Perry, A. M., Joseph, C., Som, T. T., Ramos, A. Y., Neuberg, D. S. & Amrein, P. C. A Phase I Study of the Multi-Targeted Tyrosine Kinase Inhibitor Cabozantinib in Patients with Acute Myeloid Leukemia. Blood 128, 5218-5218 (2016).
12 Momtazi-borojeni, A. A., Abdollahi, E., Ghasemi, F., Caraglia, M. & Sahebkar, A. The novel role of pyrvinium in cancer therapy. Journal of Cellular Physiology, n/a-n/a.
13 Yu, D.-H., Macdonald, J., Liu, G., Lee, A. S., Ly, M., Davis, T., Ke, N., Zhou, D., Wong-Staal, F. & Li, Q.-X. Pyrvinium Targets the Unfolded Protein Response to Hypoglycemia and Its Anti-Tumor Activity Is Enhanced by Combination Therapy. PLoS ONE 3, e3951 (2008).
14 Harada, Y., Ishii, I., Hatake, K. & Kasahara, T. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Letters 319, 83-88 (2012).
15 Xiao, M., Zhang, L., Zhou, Y., Rajoria, P. & Wang, C. Pyrvinium selectively induces apoptosis of lymphoma cells through impairing mitochondrial functions and JAK2/STAT5. Biochemical and Biophysical Research Communications 469, 716-722 (2016).
16 Deng, L., Lei, Y., Liu, R., Li, J., Yuan, K., Li, Y., Chen, Y., Liu, Y., Lu, Y., Edwards Iii, C. K., Huang, C. & Wei, Y. Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death & Disease 4, e614 (2013).
17 Jansson, L., Kim, G. & Cheng, A. Making sense of Wnt signaling—linking hair cell regeneration to development. Vol. 9 (2015).
18 Li, Vivian S. W., Ng, Ser S., Boersema, Paul J., Low, Teck Y., Karthaus, Wouter R., Gerlach, Jan P., Mohammed, S., Heck, Albert J. R., Maurice, Madelon M., Mahmoudi, T. & Clevers, H. Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex. Cell 149, 1245-1256 (2012).
19 Morris, S.-A. L. & Huang, S. Crosstalk of the Wnt/β-catenin pathway with other pathways in cancer cells. Genes & Diseases 3, 41-47 (2016).
20 Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.-H., Tan, Y., Zhang, Z., Lin, X. & He, X. Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism. Cell 108, 837-847 (2002).
21 MacDonald, B. T., Tamai, K. & He, X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Developmental Cell 17, 9-26 (2009).
22 Kanna, R., Choudhary, G., Ramachandra, N., Steidl, U., Verma, A. & Shastri, A. STAT3 inhibition as a therapeutic strategy for leukemia. Leukemia & Lymphoma, 1-7 (2017).
23 Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer 14, 736 (2014).
24 Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nature Reviews Cancer 17, 528 (2017).
25 Oslowski, C. M. & Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in enzymology 490, 71-92 (2011).
26 Wang, M. & Kaufman, R. J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nature Reviews Cancer 14, 581 (2014).
27 Zheng, J. I. E. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology Letters 4, 1151-1157 (2012).
28 Basak, N. P. & Banerjee, S. Mitochondrial dependency in progression of acute myeloid leukemia. Mitochondrion 21, 41-48 (2015).
29 Liang Xu, L. Z., Chun Hu, Shujing Liang, Xiaochun Fei, Ningning Yan, Yanyun Zhang, Fengchun Zhang. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. . International Journal of Oncology 48, 1175-1186 (2016).
30 Xu, W., Lacerda, L., Debeb, B. G., Atkinson, R. L., Solley, T. N., Li, L., Orton, D., McMurray, J. S., Hang, B. I., Lee, E., Klopp, A. H., Ueno, N. T., Reuben, J. M., Krishnamurthy, S. & Woodward, W. A. The Antihelmintic Drug Pyrvinium Pamoate Targets Aggressive Breast Cancer. PLoS ONE 8, e71508 (2013).
31 Xu, F., Zhu, Y., Lu, Y., Yu, Z., Zhong, J., Li, Y. & Pan, J. Anthelmintic pyrvinium pamoate blocks Wnt/β-catenin and induces apoptosis in multiple myeloma cells. Oncology Letters 15, 5871-5878 (2018).
32 Folkerts, H., Hilgendorf, S., Wierenga, A. T. J., Jaques, J., Mulder, A. B., Coffer, P. J., Schuringa, J. J. & Vellenga, E. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia. Cell Death & Disease 8, e2927 (2017).
33 Xiang, W., Cheong, J. K., Ang, S. H., Teo, B., Xu, P., Asari, K., Sun, W. T., Than, H., Bunte, R. M., Virshup, D. M. & Chuah, C. Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget 6, 33769-33780 (2015).
34 Wallace, D. C. Mitochondria and cancer. Nature Reviews Cancer 12, 685 (2012).
35 Warburg, O. On the Origin of Cancer Cells. Science 123, 309-314 (1956).
36 Lagadinou, Eleni D., Sach, A., Callahan, K., Rossi, Randall M., Neering, Sarah J., Minhajuddin, M., Ashton, John M., Pei, S., Grose, V., O’Dwyer, Kristen M., Liesveld, Jane L., Brookes, Paul S., Becker, Michael W. & Jordan, Craig T. BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell 12, 329-341 (2013).
37 Tait, S. W. G. & Green, D. R. Mitochondria and cell signalling. Journal of Cell Science 125, 807-815 (2012).
38 Chen, Y.-F., Liu, H., Luo, X.-J., Zhao, Z., Zou, Z.-Y., Li, J., Lin, X.-J. & Liang, Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Critical Reviews in Oncology / Hematology 112, 21-30 (2017).
39 Poillet-Perez, L., Despouy, G., Delage-Mourroux, R. & Boyer-Guittaut, M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biology 4, 184-192 (2015).
40 Schardt, J. A., Weber, D., Eyholzer, M., Mueller, B. U. & Pabst, T. Activation of the Unfolded Protein Response Is Associated with Favorable Prognosis in Acute Myeloid Leukemia. Clinical Cancer Research 15, 3834-3841 (2009).
41 Wang, R. C., Wei, Y., An, Z., Zou, Z., Xiao, G., Bhagat, G., White, M., Reichelt, J. & Levine, B. Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation. Science (New York, N.Y.) 338, 956-959 (2012).
42 Bijur, G. N. & Jope, R. S. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. Journal of neurochemistry 87, 1427-1435 (2003).
43 Li, C., Li, Y., He, L., Agarwal, A. R., Zeng, N., Cadenas, E. & Stiles, B. L. PI3K/AKT Signaling Regulates Bioenergetics in Immortalized Hepatocytes. Free radical biology & medicine 60, 29-40 (2013).
44 Wegrzyn, J., Potla, R., Chwae, Y.-J., Sepuri, N. B. V., Zhang, Q., Koeck, T., Derecka, M., Szczepanek, K., Szelag, M., Gornicka, A., Moh, A., Moghaddas, S., Chen, Q., Bobbili, S., Cichy, J., Dulak, J., Baker, D. P., Wolfman, A., Stuehr, D., Hassan, M. O., Fu, X.-Y., Avadhani, N., Drake, J. I., Fawcett, P., Lesnefsky, E. J. & Larner, A. C. Function of Mitochondrial Stat3 in Cellular Respiration. Science (New York, N.Y.) 323, 793-797 (2009).
45 Zhang, Q., Raje, V., Yakovlev, V. A., Yacoub, A., Szczepanek, K., Meier, J., Derecka, M., Chen, Q., Hu, Y., Sisler, J., Hamed, H., Lesnefsky, E. J., Valerie, K., Dent, P. & Larner, A. C. Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727. The Journal of Biological Chemistry 288, 31280-31288 (2013).
46 Meier, J., Raza, A., Yamada, A., Dai, Y., Chen, S., Grant, S., Takabe, K. & Larner, A. 107: STAT3 interacts with Cyclophilin D in cancer cells to regulate the mitochondrial permeability transition pore. Cytokine 70, 53 (2014).
47 Ward, A. C. STAT Inhibitors in Cancer. (2016).
48 Ishii, I., Harada, Y. & Kasahara, T. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Frontiers in Oncology 2, 137 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70393-
dc.description.abstract急性骨髓性白血病(AML)是由於骨髓系造血前驅細胞異常增生且無法分化所導致的血液惡性腫瘤,當不成熟的骨髓系造血細胞堆積在骨髓和周邊血中,會干擾白血球、紅血球及血小板的成熟與功能。大約有三分之一的AML病人帶有FLT3基因突變,其中又以FLT3內部串聯重複(FLT3-ITD)最常見,並且具有FLT3-ITD突變的病人通常預後不佳。FLT3是一種酪胺酸激酶受體(receptor tyrosine kinase, RTK),FLT3基因的變異會導致FLT3受體異常活化,進而引起下游與細胞生長、存活與增生有關之訊息傳遞路徑不斷地被活化,因此FLT3被認為有潛力作為治療AML的標的。雖然目前有許多FLT3標靶藥物進入臨床試驗的階段,但是這些藥物只能讓FLT3突變的病人得到暫時緩解,仍然有很大機率會再復發。對於產生抗藥性的原因至今仍不清楚,因此發展一個新的治療策略是必要的。
在實驗室之前的研究中發現,FLT3標靶藥物cabozantinib (XL184)能夠選擇性的抑制FLT3-ITD突變的AML細胞株Molm13之生長,在動物實驗中也發現cabozantinib能有效抑制Molm13腫瘤的生長。為探討cabozantinib的抗藥性,實驗室先前也建立了一株對於cabozantinib具有抗藥性的細胞株Molm13-XR。
Pyrvinium pamoate (簡稱PP)是經由FDA核准的蟯蟲驅蟲劑,最近有許多研究指出PP對於不同的癌細胞都有抑制的作用,例如乳癌、胰臟癌和大腸直腸癌等等。目前有許多研究探討PP對於不同癌細胞的作用機制,但是PP對於AML的影響尚不明瞭。因此本篇想要探討PP對於AML細胞株Molm13的作用機制,另外藉由實驗室先前建立的Molm13-XR細胞株測試PP是否對於具有FLT3標靶藥物抗藥性的細胞也有相同的作用機制。
本篇研究發現,PP在低濃度下即能有效抑制Molm13-P細胞的存活,其IC50為18.43 ± 6.45 nM,而且存活率的降低是因為PP引起了細胞凋亡,而不是因為抑制細胞生長。為找出PP造成細胞凋亡的可能原因,參考過去文獻找出一些PP可能的作用機制。結果發現在Molm13-P細胞中,PP些微減少FLT3下游的STAT5、WNT/β-catenin和STAT3訊息傳遞的活化,但是細胞核內β-catenin和p-STAT3蛋白量以及其下游標的基因轉錄卻都不受影響。另外,PP雖然會阻斷Molm13-P細胞的細胞自噬機制,但與細胞自噬相關基因的轉錄無關。如同過去文獻的發現,在Molm13-P細胞中,PP也會轉移到粒線體上,因而抑制粒線體經由氧化磷酸化合成ATP的能力,而粒線體質量減少且ROS增加的現象也說明了在PP作用之下粒線體的功能會受到損害。
接著探討PP在Molm13-XR細胞中是否也是相似的作用。結果顯示,PP在低濃度時即會促進細胞凋亡而抑制Molm13-XR的存活,其IC50為6.63 ± 4.32 nM。以低濃度PP處理Molm13-XR細胞即出現FLT3、WNT/β-catenin和STAT3訊息傳遞路徑分子的活化被抑制的情形,但同樣不影響其細胞核內β-catenin和
p-STAT3的含量,以及下游標的基因的轉錄。另外,PP同樣會阻斷細胞自噬機制,而且也不是經由抑制細胞自噬相關基因的轉錄所導致。如同過去文獻以及Molm13-P細胞的結果,PP同樣會轉移到Molm13-XR細胞的粒線體上,並且影響其粒線體的功能,包括粒線體氧化磷酸化的抑制、粒線體質量的減少以及ROS增加。最後,不論是Molm13-P或是Molm13-XR細胞中,PP與cabozantinib的抑殺效果都有協同作用。
整體來說,不論Molm13-P細胞或是有抗藥性的Molm13-XR細胞,PP皆能有相當好的毒殺效果,並且皆會抑制粒線體的功能以及細胞自噬機制。本篇研究也發現Molm13-XR內過度活化的訊息傳遞路徑會受PP所抑制,可能因此造成Molm13-XR的IC50略低於Molm13-P的結果。PP雖然改變了Molm13-XR內訊息傳遞分子的活化卻不會影響下游基因的轉錄,或許暗示了PP的作用是經由影響訊息傳遞路徑與粒線體之間的交互關係,而不是經由影響訊息分子進入細胞核內調控轉錄的功能。
zh_TW
dc.description.abstractAcute myeloid leukemia (AML) is a hematological malignancy characterized by the aberrant proliferation and differentiation block of precursor myeloid cells. Approximately one third of AML patients harbor FLT3 mutations. Internal tandem duplications mutations in FLT3 (FLT3-ITD) is the most common form and usually correlated with poor prognosis. FLT3 has been considered as a promising therapeutic target for AML, therefore, several FLT3 inhibitors have been used in clinical trials, including cabozantinib (XL184).
Our previous studies demonstrated that cabozantinib selectively inhibited the viability of AML cell lines with FLT3-ITD mutations, including Molm13 cell line (also known as Molm13-P), both in vitro and in vivo. Since drug resistance of FLT3 inhibitors has emerged in clinical, our lab established cabozantinib resistant Molm13 cell line (also known as Molm13-XR) to investigate the mechanisms underlying the drug resistance.
Recent studies indicated that pyrvinium pamoate (PP), an FDA-approved anthelmintic drug, had a potent anticancer activity against various cancer cells. The mechanisms of PP are currently under extensive investigation. However, the anticancer effects and mechanisms of PP toward AML cells still remain unknown.
We revealed that PP caused cytotoxicity toward Molm13-P by inducing cell apoptosis. The IC50 for Molm13-P was 18.43 ± 6.45 nM. Our studies demonstrated that PP slightly inhibited STAT5, WNT/β-catenin and STAT3 signaling pathway in Molm13-P. However, the protein levels of β-catenin and p-STAT3 in nucleus were not decreased, consistent with the unaffected downstream target genes transcription. In addition, PP blocked autophagy without inhibiting autophagy-associated gene transcription. We also found that PP localized on mitochondria and inhibit mitochondrial oxidative phosphorylation, resulting in reduced ATP production in Molm13-P. As a result of impaired mitochondrial function, our studies showed that the mitochondria mass decreased and ROS level increased after PP treatment.
In turn, we also revealed that PP also caused cytotoxicity toward Molm13-XR by inducing cell apoptosis. The IC50 for Molm13-XR was 6.63 ± 4.32 nM. Our studies indicated that PP inhibited STAT5, AKT and ERK activation, and also suppressed WNT/β-catenin and STAT3 signaling pathway in Molm13-XR. However, the protein levels of β-catenin and p-STAT3 in nucleus, as well as the downstream target genes transcription, were not decreased by PP treatment in Molm13-XR,. In addition, PP blocked autophagy without disturbing autophagy-associated gene transcription. PP also localized on mitochondria and inhibited mitochondria oxidative phosphorylation, resulting in decreased ATP production in Molm13-XR. Decreased mitochondria mass and increased ROS level in PP-treated Molm13-XR also implied the mitochondria dysfunction caused by PP. Moreover, we showed that PP and cabozantinib have synergistic effect on Molm13-P and Molm13-XR.
In conclusion, this study supports that PP potently inhibited the viability of Molm13 cell lines with or without cabozantinib resistance through cell apoptosis. Our results demonstrated that PP inhibited mitochondrial function and autophagy both in Molm13-P and Molm13-XR. Although some signaling molecules inactivated by PP, the target gene transcription was not subsequently inhibited. These evidences implied that the effects of PP might primarily change the interaction between signaling pathway and mitochondria, instead of altering the nuclear function.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:27:12Z (GMT). No. of bitstreams: 1
ntu-107-R05424002-1.pdf: 4276238 bytes, checksum: 5223e530766dfd10d93c6bb0210b15bf (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄 I
圖目錄 V
表目錄 VII
縮寫表 VIII
摘要 IX
Abstract XII
第一章 前言 1
1.1 急性骨髓性白血病簡介 1
1.1.1 急性骨髓性白血病(Acute Myeloid Leukemia, AML) 1
1.1.2 AML之分類 1
1.1.3 AML之治療 2
1.2 FLT3之簡介 3
1.3 Cabozantinib (XL184)抗藥性細胞株Molm13-XR之簡介 4
1.4 Pyrvinium Pamoate (PP)之簡介 4
1.5 Wnt/β-catenin訊息傳遞路徑之介紹 5
1.6 STAT3之簡介 6
1.7 細胞自噬(autophagy)之簡介 6
1.8 未摺疊蛋白反應(unfolded protein response, UPR) 之簡介 7
1.9 粒線體氧化磷酸化(Oxidative phosphorylation, OXPHOS)之簡介 7
第二章 研究目的 9
第三章 材料與方法 10
3.1 材料 10
3.1.1 細胞株 10
3.1.2 儀器設備 10
3.1.3 藥品 11
3.1.4 抗體 13
3.1.5 試劑組 14
3.1.6 藥品與試劑配製 15
3.2 方法 18
3.2.1 細胞培養 18
3.2.2 細胞抑殺試驗 (ACP assay) 18
3.2.3 細胞存活率 18
3.2.4 流式細胞儀(Flow cytometry)分析 18
I. 細胞凋亡(apoptosis)分析 18
II. 細胞週期分析 19
III. 活性氧物質 (Reactive oxygen species, ROS)分析 19
3.2.5 細胞群落分析(Colony formation assay) 20
3.2.6 細胞內蛋白質萃取 20
3.2.7 蛋白質濃度定量 21
3.2.8 西方墨點法 21
3.2.9 核質蛋白分離 22
3.2.10 RNA萃取 22
3.2.11 反轉錄聚合酶連鎖反應 (RT-PCR) 23
3.2.12 即時監控聚合酶連鎖反應 (q-RT-PCR) 23
3.2.13 細胞內ATP定量 24
3.2.14 海馬生物能量儀 24
3.2.15 共軛焦顯微鏡影像分析 24
3.2.16 粒線體Complex I 活性分析 25
3.2.17 統計方法 26
第四章 實驗結果 27
4.1 Pyrvinium pamoate對Molm13-P細胞有抑制效果 27
4.2 Pyrvinium pamoate會促使Molm13-P細胞凋亡,但不影響其細胞週期 27
4.3 Pyrvinium pamoate不影響Molm13-P細胞的幹細胞特性 28
4.4 Pyrvinium pamoate抑制Molm13-P細胞之STAT5、Wnt/β-catenin及STAT3訊息傳遞路徑分子的活化,但不影響其下游標的基因的轉錄 28
4.5 Pyrvinium pamoate抑制Molm13-P細胞之細胞自噬能力 29
4.6 Pyrvinium pamoate不影響Molm13-P細胞中未摺疊蛋白反應相關基因的轉錄 30
4.7 Pyrvinium pamoate標靶於Molm13-P細胞之粒線體,並破壞粒線體功能 30
4.8 Pyrvinium pamoate對Molm13-XR細胞有抑制效果 31
4.9 Pyrvinium pamoate會促使Molm13-XR細胞凋亡,但不影響其細胞週期 32
4.10 Pyrvinium pamoate不影響Molm13-XR細胞的幹細胞特性 32
4.11 Pyrvinium pamoate抑制Molm13-XR細胞之FLT3下游分子以及Wnt/β-catenin、STAT3訊息傳遞路徑的活化,但不影響其下游標的基因的轉錄 32
4.12 Pyrvinium pamoate抑制Molm13-XR細胞之細胞自噬能力 33
4.13 Pyrvinium pamoate不影響Molm13-XR細胞中未摺疊蛋白反應相關基因的轉錄 34
4.14 Pyrvinium pamoate標靶於Molm13-XR細胞之粒線體,並破壞粒線體功能 34
4.15 Pyrvinium pamoate合併Cabozantinib對Molm13-P和Molm13-XR細胞都有協同作用 35
第五章 討論 36
第六章 參考文獻 41
圖 46
表 83
附圖 84
附表 92
dc.language.isozh-TW
dc.subjectcabozantinib抗藥性zh_TW
dc.subjectFLT3-ITDzh_TW
dc.subjectpyrvinium pamoatezh_TW
dc.subject粒線體zh_TW
dc.subject急性骨髓性白血病zh_TW
dc.subjectpyrvinium pamoateen
dc.subjectmitochondriaen
dc.subjectcabozantinib resistanceen
dc.subjectFLT3-ITDen
dc.subjectAMLen
dc.title探討Pyrvinium Pamoate在Molm13血癌細胞株中的抗癌機制zh_TW
dc.titleInvestigating the anti-cancer mechanisms of Pyrvinium Pamoate on Molm13 leukemic cellsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee歐大諒,胡忠怡,陳建源,郭靜穎
dc.subject.keyword急性骨髓性白血病,FLT3-ITD,cabozantinib抗藥性,pyrvinium pamoate,粒線體,zh_TW
dc.subject.keywordAML,FLT3-ITD,cabozantinib resistance,pyrvinium pamoate,mitochondria,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201803017
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved