請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70390完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏銘 | |
| dc.contributor.author | Hua-Yu Chou | en |
| dc.contributor.author | 周華佑 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:27:08Z | - |
| dc.date.available | 2018-08-18 | |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | Reference
[1] P. H. Lee, C. C. Chan, S. L. Huang, A. Chen, and H. H. Chen, “Blood vessel extraction from OCT data by short-time RPCA,” in Proc. IEEE International Conference on Image Processing, pp. 394-398, 2016. [2] A. Li, J. Cheng, A. Ping, R. Srivastava, D. W. K. Wong, H. L. Tey, and J. Liu, “Automated basal cell carcinoma detection in high-definition optical coherence tomography,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2885-2888, 2016. [3] S. Kurugol, J. G. Dy, D. H. Brooks, M. Rajadhyaksha, “Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin,” in Journal of Biomedical Optics 16(3) 036005, 2011. [4] A. Li, J. Cheng, A. Ping, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3045-3048, 2015. [5] A. Taghavikhalilbad, S. Adabi, A. Clayton, H. Soltanizadeh, D. Mehregan, and M. R. N. Avanaki, “Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin,” in Applied Optics 56, 3116-3121, 2017. [6] O. Ronneberger, P. Fischer, T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI, vol 9351, 2015. [7] D. P. Kingma and J. Ba, “ADAM: a method for stochastic optimization,” in Proc. International Conference on Learning Representation, 2015. [8] D. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology, vol. 224, no. 1, pp. 84-92, 2012 [9] A. Dubois and A. C. Boccara, “Full-field optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, 2008. [10] C. C. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, M. Y. Lin, J. W. Tjis, and S. L. Huang, “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomedical Optics Express, vol.5, no. 9, pp. 3001-3010, 2014. [11] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254 no. 5035, pp. 1178-1181, 1991. [12] J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, 2008. [13] W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt., vol. 19, no. 7 pp. 071412-1-071412-34, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70390 | - |
| dc.description.abstract | 真皮表皮交界處(dermal epidermal junction, DEJ)是皮膚組織中重要的位置,許多皮膚癌都是從DEJ開始發展,所以在皮膚組織中尋找DEJ在輔助醫療診斷系統中是一件重要的工作。本篇論文使用光學同調斷層掃描(optical coherence tomography, OCT)所獲得之三維皮膚資料,並以深度學習方法來學習表皮與真皮層之特徵來尋找DEJ所在位置,此外,我們利用三維資料的連續性來進行前處理及後處理,讓得到的結果更加符合真實情境。實驗結果證明我們的方法比以前的方法能更加準確地找出DEJ位置,從分析中也可以看出為何我們的方法能夠成功找出DEJ。 | zh_TW |
| dc.description.abstract | Recently, full-field optical coherence tomography (OCT) has been developed and can get three-dimensional (3D) OCT data of human skin to achieve early diagnosis of skin cancer. In the dermatological applications of full-field OCT, dermal epidermal junction (DEJ), where melanomas and basal cell carcinomas originate, detection is an essential step for cancer diagnosis. Therefore, finding DEJ in 3D OCT data becomes an important issue for computer-aided diagnosis. However, most existing DEJ detection methods do not consider the relationship between neighboring frames. In this thesis, we proposed a novel method to find DEJ in 3D OCT data. A notable feature of our method is that it utilizes continuity of 3D data to refine the training data and train a multi-directional deep convolutional neural network (DCNN). In this way, we can eliminate noise in the training data and generate resulting DEJ with continuous surface, which follows the property of human skin. Besides, a subjective test is performed to show that the refined training data meet doctors’ standard. Finally, we evaluate our method by different metrics. The experimental results show that our method can get about 5 μm in mean error, which is significant improvement in DEJ localization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:27:08Z (GMT). No. of bitstreams: 1 ntu-107-R05942073-1.pdf: 1660385 bytes, checksum: 79e6498f148a26cffbdde1b5048001a7 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vi Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 OCT Data 4 2.2 Related Work 5 Chapter 3 Methods 8 3.1 Data Preprocessing 8 3.2 Multi-directional CNN Model Training 10 3.3 Crosscheck Refinement 12 Chapter 4 Experiments 15 4.1 Experimental Setup and Subjective Test 15 4.2 Error Evaluation 17 4.3 Accuracy Evaluation 17 4.4 Crosscheck Refinement Evaluation 19 Chapter 5 Conclusion 20 REFERENCE 21 | |
| dc.language.iso | en | |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 真皮表皮交界處 | zh_TW |
| dc.subject | 皮膚組織 | zh_TW |
| dc.subject | dermal epidermal junction | en |
| dc.subject | human skin | en |
| dc.subject | Deep learning | en |
| dc.subject | optical coherence tomography | en |
| dc.subject | convolutional neural network | en |
| dc.title | 利用深度學習方法從光學同調斷層掃描資料找尋真皮表皮交界處 | zh_TW |
| dc.title | Dermal Epidermal Junction Classification from Full-Field OCT Data of Human Skin by Deep Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃升龍,邱政偉,彭文孝,簡韶逸 | |
| dc.subject.keyword | 深度學習,卷積神經網路,真皮表皮交界處,光學同調斷層掃描,皮膚組織, | zh_TW |
| dc.subject.keyword | Deep learning,convolutional neural network,dermal epidermal junction,optical coherence tomography,human skin, | en |
| dc.relation.page | 22 | |
| dc.identifier.doi | 10.6342/NTU201803257 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
