Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李太楓(Typhoon Lee)
dc.contributor.authorKota Naitoen
dc.contributor.author內藤航太zh_TW
dc.date.accessioned2021-06-17T04:27:03Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationBibliography
[1] Michael K Weisberg, Timothy J McCoy, and Alexander N Krot. Systematics and evaluation of meteorite classification. Meteorites and the early solar system II, 19, 2006.
[2] AN Krot, K Keil, CA Goodrich, ERD Scott, and MK Weisberg. Classification of meteorites. Meteorites, Comets and Planets: Treatise on Geochemistry, Volume 1. Edited by AM Davis. Executive Editors: HD Holland and KK Turekian. ISBN 0-08- 044720-1. Published by Elsevier BV, Amsterdam, The Netherlands, 2005, p. 83, 1:83, 2005.
[3] O Richard Norton. The Cambridge encyclopedia of meteorites, volume 1. 2002.
[4] JT Wasson, AE. Rubin, and E Widom. Catalog of the collection of meteorites at the university of california, los angeles. Meteoritics, 20(1):151, 1985.
[5] VK Pearson, MA Sephton, IA Franchi, JM Gibson, and Iain Gilmour. Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic com- positions. Meteoritics & Planetary Science, 41(12):1899–1918, 2006.
[6] Thierry Montmerle, Jean-Charles Augereau, Marc Chaussidon, Matthieu Gounelle, Bernard Marty, and Alessandro Morbidelli. Solar system formation and early evo- lution: the first 100 million years, pages 39–95. Springer, 2006.
[7] Katia M Ferriere. The interstellar environment of our galaxy. Reviews of Modern Physics, 73(4):1031, 2001.
[8] Pascale Ehrenfreund and Steven B Charnley. Organic molecules in the interstel- lar medium, comets, and meteorites: a voyage from dark clouds to the early earth. Annual Review of Astronomy and Astrophysics, 38(1):427–483, 2000.
[9] Eric Herbst. Chemistry in the interstellar medium. Annual Review of Physical Chem- istry, 46(1):27–54, 1995.
[10] Bruce T Draine. Interstellar dust grains. arXiv preprint astro-ph/0304489, 2003.
[11] Scott A Sandford and Louis J Allamandola. Condensation and vaporization studies of ch3oh and nh3 ices: Major implications for astrochemistry. The Astrophysical Journal, 417:815–825, 1993.
[12] C Malcolm Walmsley, DR Flower, and G Pineau Des Forêts. Complete depletion in prestellar cores. Astronomy & Astrophysics, 418(3):1035–1043, 2004.
[13] AGGM Tielens and W Hagen. Model calculations of the molecular composition of interstellar grain mantles. Astronomy and Astrophysics, 114:245–260, 1982.
[14] SB Charnley. Stochastic theory of molecule formation on dust. The Astrophysical Journal Letters, 562(1):L99, 2001.
[15] Joseph A Nuth III, Steven B Charnley, and Natasha M Johnson. Chemical processes in the interstellar medium: Source of the gas and dust in the primitive solar nebula. Meteorites and the early solar system II, 2:147–167, 2006.
[16] Tatsuhiko Hasegawa, Eric Herbst, and Chun M Leung. Models of gas-grain chem- istry in dense interstellar clouds with complex organic molecules. The Astrophysical Journal Supplement Series, 82:167–195, 1992.
[17] Audrey Bouvier and Meenakshi Wadhwa. The age of the solar system redefined by the oldest pb–pb age of a meteoritic inclusion. Nature geoscience, 3(9):637–641, 2010.
[18] Sara S Russell, Lee Hartmann, Jeff Cuzzi, Alexander N Krot, Matthieu Gounelle, and Stu Weidenschilling. Timescales of the solar protoplanetary disk. Meteorites and the early solar system II, 1:233–251, 2006.
[19] AV Ivlev, M Padovani, D Galli, and P Caselli. Interstellar dust charging in dense molecular clouds: Cosmic ray effects. The Astrophysical Journal, 812(2):135, 2015.
[20] Max P Bernstein, Scott A Sandford, Louis J Allamandola, J Seb Gillette, Simon J Clemett, and Richard N Zare. Uv irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science, 283(5405):1135–1138, 1999.
[21] GM Munoz Caro, UJ Meierhenrich, WA Schutte, B Barbier, A Arcones Segovia, H Rosenbauer, WH-P Thiemann, A Brack, and JM Greenberg. Amino acids from ul- traviolet irradiation of interstellar ice analogues. Nature, 416(6879):403–406, 2002.
[22] Alan P Boss. Temperatures in protoplanetary disks. Annual Review of Earth and Planetary Sciences, 26(1):53–80, 1998.
[23] FJ Ciesla and SB Charnley. The physics and chemistry of nebular evolution. Mete- orites and the early solar system II, 943:209–230, 2006.
[24] Harold C Connolly Jr, SJ Desch, Richard D Ash, and Rhian H Jones. Transient heating events in the protoplanetary nebula. Meteorites and the early solar system II, pages 383–397, 2006.
[25] James N Connelly, Martin Bizzarro, Alexander N Krot, Åke Nordlund, Daniel Wielandt, and Marina A Ivanova. The absolute chronology and thermal process- ing of solids in the solar protoplanetary disk. Science, 338(6107):651–655, 2012.
[26] Gary Lofgren and AB Lanier. Dynamic crystallization study of barred olivine chon- drules. Geochimica et Cosmochimica Acta, 54(12):3537–3551, 1990.
[27] Gary R Huss, Alan E Rubin, and Jeffrey N Grossman. Thermal metamorphism in chondrites. Meteorites and the early solar system II, 943:567–586, 2006.
[28] Adrian J Brearley. The action of water. Meteorites and the early solar system II, 943:587–624, 2006.
[29] S Pizzarello, GW Cooper, and GJ Flynn. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorites and the early solar system II, 1:625–651, 2006.
[30] Osamu Ichikawa and Yukio Ikeda. Petrology of the yamato-8449 cr chondrite. Antarctic Meteorite Research, 8:63, 1995.
[31] Alexander N Krot, Edward RD Scott, and Michael E Zolensky. Mineralogical and chemical modification of components in cv3 chondrites: Nebular or asteroidal pro- cessing? Meteoritics, 30(6):748–775, 1995.
[32] K Metzler, A Bischoff, and D Stöffler. Accretionary dust mantles in cm chon- drites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta, 56(7):2873–2897, 1992.
[33] Fumio Kitajima, Tomoki Nakamura, Nobuo Takaoka, and Tatsushi Murae. Eval- uating the thermal metamorphism of cm chondrites by using the pyrolytic behav- ior of carbonaceous macromolecular matter. Geochimica et Cosmochimica Acta, 66(1):163–172, 2002.
[34] David Deamer, Jason P Dworkin, Scott A Sandford, Max P Bernstein, and Louis J Allamandola. The first cell membranes. Astrobiology, 2(4):371–381, 2002.
[35] Arthur L Weber. The sugar model: catalysis by amines and amino acid products. Origins of Life and Evolution of the Biosphere, 31(1-2):71–86, 2001.
[36] J Park, R Okazaki, K Nagao, and R Bartoschewitz. Noble gas study of new en- statite sau 290 with high solar gases. In 36th Annual Lunar and Planetary Science Conference, volume 36, 2005.
[37] R Bartoschewitz, P Appel, B Mader, J Park, K Nagao, R Okazaki, M Kusakabe, U Krähenbühl, and MI Prudencio. Sayh al uhaymir 290-a new ch3 chondrite. Me- teoritics & Planetary Science, 40(9):A18–A18, 2005.
[38] Harold C Connolly, Caroline Smith, Gretchen Benedix, Luigi Folco, Kevin Righter, Jutta Zipfel, Akira Yamaguchi, and Hasnaa Chennaoui Aoudjehane. The meteoritical bulletin, no. 92, 2007 september. Meteoritics & Planetary Science, 42(9):1647– 1694, 2007.
[39] SVS Murty, RR Mahajan, and R Bartoschewitz. Nitrogen in sayh al uhaymir 290. Meteoritics and Planetary Science Supplement, 42:5012, 2007.
[40] JE Burton, ET Parker, DP Glavin, JP Dworkin, R Bartoschewitz, and Johnson Space. Atypical amino acid structural and isotopic compositions in the cr2 chondrite miller range 090001 and the ch3 chondrite sayh al uhaymir 290. as. In Lunar and Planetary Science Conference, volume 46, page 2242, 2015.
[41] Keith Kvenvolden, James Lawless, Katherine Pering, Etta Peterson, Jose Flores, Cyril Ponnamperuma, Isaac R Kaplan, and Carleton Moore. Evidence for ex- traterrestrial amino-acids and hydrocarbons in the murchison meteorite. Nature, 228(1):923–926, 1970.
[42] S Pizzarello and JR Cronin. Alanine enantiomers in the murchison meteorite. Nature, 394(6690):236–236, 1998.
[43] Philippe Schmitt-Kopplin, Zelimir Gabelica, Régis D Gougeon, Agnes Fekete, Basem Kanawati, Mourad Harir, Istvan Gebefuegi, Gerhard Eckel, and Norbert Hertkorn. High molecular diversity of extraterrestrial organic matter in murchison meteorite revealed 40 years after its fall. Proceedings of the National Academy of Sciences, 107(7):2763–2768, 2010.
[44] John F Kerridge. Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abun- dances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49(8):1707–1714, 1985.
[45] CM O’D Alexander, M Fogel, H Yabuta, and GD Cody. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macro- molecular organic matter. Geochimica et Cosmochimica Acta, 71(17):4380–4403, 2007.
[46] PK Swart, MM Grady, CT Pillinger, RS Lewis, and Edward Anders. Interstellar carbon in meteorites. Science, 220(4595):406–410, 1983.
[47] Peter Hoppe, Sachiko Amari, Ernst Zinner, Trevor Ireland, and Roy S Lewis. Car- bon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single in- terstellar silicon carbide grains from the murchison carbonaceous chondrite. The Astrophysical Journal, 430:870–890, 1994.
[48] David SP Dearborn, Peter P Eggleton, and DN Schramm. 12c/13c ratios in stars ascending the giant branch the first time. The Astrophysical Journal, 203:455–462, 1976.
[49] Sandra Pizzarello and Everett Shock. The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harbor per- spectives in biology, 2(3):a002105, 2010.
[50] Z Martins, CM O’D Alexander, GE Orzechowska, ML Fogel, and P Ehrenfreund. Indigenous amino acids in primitive cr meteorites. Meteoritics & Planetary Science, 42(12):2125–2136, 2007.
[51] Jamie E Elsila, Steven B Charnley, Aaron S Burton, Daniel P Glavin, and Jason P Dworkin. Compound‐specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in cm and cr chondrites and their use in evaluating potential formation pathways. Meteoritics & Planetary Science, 47(9):1517–1536, 2012.
[52] AN Nguyen, CM Alexander, and LR Nittler. An abundant mix of presolar matter in the highly primitive cr chondrite que 99177. In Meteoritics and Planetary Science Supplement, volume 43, 2008.
[53] Z Peeters, H Changela, RM Stroud, CM Alexander, and LR Nittler. Coordinated analysis of in situ organic material in the cr chondrite que 99177. In Lunar and Planetary Science Conference, volume 43, 2012.
[54] C Floss and FJ Stadermann. Very high presolar grain abundances in the cr chondrite que 99177. Meteoritics and Planetary Science Supplement, 42:5060, 2007.
[55] Christine Floss and Frank J Stadermann. High abundances of circumstellar and inter- stellar c-anomalous phases in the primitive cr3 chondrites que 99177 and met 00426. The Astrophysical Journal, 697(2):1242, 2009.
[56] Bradley T De Gregorio, Rhonda M Stroud, Larry R Nittler, Conel MO’D Alexan- der, Nabil D Bassim, George D Cody, AL Kilcoyne, Scott A Sandford, Stefanie N Milam, and Michel Nuevo. Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteoritics & Planetary Science, 48(5):904–928, 2013.
[57] Kazuyuki Tamura, Violet A Mager, Lindsey A Burnett, John H Olson, Jeremy B Brower, Ashley R Casano, Debra P Baluch, Jerome H Targovnik, Rogier A Wind- horst, and Richard M Herman. A semi-automated analysis method of small sensory nerve fibers in human skin-biopsies. Journal of neuroscience methods, 185(2):325– 337, 2010.
[58] Kate Monzo, Susan R Dowd, Jonathan S Minden, and John C Sisson. Proteomic analysis reveals cct is a target of fragile x mental retardation protein regulation in drosophila. Developmental biology, 340(2):408–418, 2010.
[59] Emmanuel Bertin and Stephane Arnouts. Sextractor: Software for source extraction. Astronomy and Astrophysics Supplement Series, 117(2):393–404, 1996.
[60] Benne W Holwerda. Source extractor for dummies v5. arXiv preprint astro- ph/0512139, 2005.
[61] Edward RD Scott, Klaus Keil, and Dieter Stöffler. Shock metamorphism of carbona- ceous chondrites. Geochimica et Cosmochimica Acta, 56(12):4281–4293, 1992.
[62] Monica M Grady and CT Pillinger. Alh 85085: Nitrogen isotope analysis of a highly unusual primitive chondrite. Earth and planetary science letters, 97(1-2):29–40, 1990.
[63] Monica M Grady and CT Pillinger. Acfer 182: search for the location of15n-enriched nitrogen in an unusual chondrite. Earth and planetary science letters, 116(1-4):165– 180, 1993.
[64] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.
[65] Jongmann Yang and Samuel Epstein. Interstellar organic matter in meteorites. Geochimica et Cosmochimica Acta, 47(12):2199–2216, 1983.
[66] M Schulte. Organic synthesis during aqueous alteration of carbonaceous chondrites: Comparison of cm and ci groups. Meteoritics and Planetary Science Supplement, 33:A137, 1998.
[67] VJ Pearson, AT Kearsley, MA Sephton, and I Gilmour. Organic-inorganic spatial relationships in carbonaceous chondrites. 2002.
[68] WR Van Schmus and John A Wood. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31(5):747–765, 1967.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70385-
dc.description.abstract據目前所知,地球是宇宙中獨有的生命孕育之處,但我們對於生命的起源卻不甚了解。先前的研究顯示,地球生命中的一些有機分子,也存在於數個最原始的隕石種類中。因此,這些有機分子可能伴隨隕石抵達地球,成為生命最初的組成。在本研究中,作者以創新的方法研究隕石內有機體的性質。不同於傳統的圖像分析,作者使用NanoSIMS儀器測繪SaU 290隕石的表面圖,並使用SourceExtractor軟體分析影像,以統計方法研究超過五千項有機物的形態學性質、元素組成與同位素組成。作者藉由反覆且全面地測試分析結果、進行數據過濾,最佳化統計結果的正確性,並將分析數據與先前研究已繪製出的Murchison、GRA 95229、QUE 99177隕石圖相較,得出研究結果。此份結果為隕石內有機體性質提供了許多新的資訊;包括不同隕石內有機體的形態學、元素、同位素變數的相關性,特定種類的有機體容易群聚的傾向,以及研究中四種隕石的特性。有鑑於太陽系演化的複雜性以及隕石中有機物的多樣性,作者認為,本研究結果中不同隕石內有機物的相關和趨勢,可為生命起源提供嶄新的見解。zh_TW
dc.description.abstractAt present, Earth is the only place that is known to harbour life in this Universe, and little is understood about the origin of life. Previous laboratory studies discovered that some of the organic molecules that reside in life on Earth also occur in the most primitive types of meteorites. As such, they may have contributed to building blocks of life through extraterrestrial delivery. In this thesis, we discuss our novel approach for studying the nature of meteoritic organics. Instead of the conventional image-by-image analysis, we used our NanoSIMS to map a large surface area of SaU 290 and studied the statistical behaviour of over 5,000 organic inclusions, which were automatically extracted by image analysis software (SourceExtractor). We extensively tested all parts of our analysis and performed data filtering, to maximise the accuracy of the obtained data on SaU290. The data was compared with the previously recorded maps of three other meteorites: Murchison, GRA 95229 and QUE 99177. As a result, we acquired a large set of new information on the nature of meteoritic organics, including correlations among the morphological, elemental and isotopic parameters of each meteorite, tendencies for certain types of organic inclusions to cluster, and trends among the four meteorites. Given the complex evolution of the Solar System and the diversity of meteoritic organics, we conclude that the correlations and the trends that were found within and among the meteorites in this study offer new insights to the current understanding of the origin of life.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:27:03Z (GMT). No. of bitstreams: 1
ntu-107-R03244007-1.pdf: 20376699 bytes, checksum: f9799f96f952f2ffe00b9bee2065ce4c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書 iii
Acknowledgements v
摘要 vii
Abstract ix
1 Introduction 1
1.1 Meteorite Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Carbonaceous Chondrites . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Classification Hierarchy . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Early Evolution of Solar System . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Presolar Nebula Epoch . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Planetarydisk Formation Epoch . . . . . . . . . . . . . . . . . . 5
1.2.3 Accretion Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 SaU 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Murchison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 GRA 95229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 QUE 99177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Experimental 13
2.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 NanoSIMS Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 SIMS Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Secondary Ion Imaging . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Automated Search for Organic Inclusions . . . . . . . . . . . . . . . . . 20
2.3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Automatic Inclusion Detection . . . . . . . . . . . . . . . . . . . 23
2.3.3 Detectability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 Results and Discussion on SaU 290 33
3.1 Statistical Distributions of Detected ROIs . . . . . . . . . . . . . . . . . 33
3.1.1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Elemental Composition . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3 Isotopic Composition . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Rank Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Spatial Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Comparison among Meteorites 45
4.1 Detected Organic Inclusions . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Statistical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Isotopic Composition . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Rank Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Spatial Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Conclusions and Future Work 57
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1 SaU 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Trends among Meteorites . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 59
Bibliography 61
dc.language.isoen
dc.title隕石內有機物質之統計研究zh_TW
dc.titleStatistical Study of Organic Inclusions in Meteoritesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor哲皮仁(Zan Peeters)
dc.contributor.oralexamcommittee李德春(Der-Chuen Lee)
dc.subject.keyword隕石,有機物,台奈米級二次離子質譜儀,統計研究,zh_TW
dc.subject.keywordMeteorites,Organic matter,NanoSIMS,Statistical analysis,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201802930
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
19.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved