Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏俊雄(Chun-Hsiung Hsia)
dc.contributor.authorShih-Hsin Chenen
dc.contributor.author陳世昕zh_TW
dc.date.accessioned2021-06-17T04:27:00Z-
dc.date.issued2020
dc.date.submitted2020-07-17
dc.identifier.citation[1] Acebrón, Juan A and Bonilla, Luis L and Vicente, Conrad J Pérez and Ritort, Félix and Spigler, Renato, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of modern physics, Vol. 77 (2005), No. 1, pp. 137
[2] Banerjee, Amitava, Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase, Journal of Statistical Mechanics: Theory and Experiment, Vol 2017 (2017), No. 11, pp. 113402
[3] Breakspear, Michael and Heitmann, Stewart and Daffertshofer, Andreas, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model, Frontiers in human neuroscience, Vol. 4 (2010), pp. 190
[4] Bennett, Matthew and Schatz, Michael F and Rockwood, Heidi and Wiesenfeld, Kurt, Huygens’s clocks, Proceedings: Mathematics, Physical and Engineering Sciences, (2002) pp. 563–579
[5] Bargiello, Thaddeus A and Jackson, F Rob and Young, Michael W, Restoration of circadian behavioural rhythms by gene transfer in Drosophila, Nature, Vol. 312 (1984), No. 5996, pp. 752–754
[6] Cumin, David and Unsworth, CP Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D: Nonlinear Phenomena, Vol. 226 (2007), No. 2, pp. 181–196
[7] Chang, Hsiao-Dong and Chu, Chia-Chi and Cauley, Gerry, Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective, Proceedings of the IEEE, Vol. 83 (1995), No. 11, pp. 1497–1529
[8] Choi, Young-Pil and Ha, Seung-Yeal and Jung, Sungeun and Kim, Yongduck Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D: Nonlinear Phenomena, Vol. 241 (2012), No. 7, pp. 735–754
[9] Choi, Young-Pil and Li, Zhuchun, Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings, Nonlinearity 32 (2019), No. 2, pp. 559–583
[10] Dario Benedetto, Emanuele Caglioti, and Umberto Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Communications in Mathematical Sciences, Vol. 13 (2015), No. 7, pp. 1775–1786
[11] Dörfler, Florian and Bullo, Francesco, On the critical coupling for Kuramoto oscillators, SIAM Journal on Applied Dynamical Systems, Vol. 10 (2011), No. 3, pp. 1070–1099
[12] Dörfler, Florian and Bullo, Francesco, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM Journal on Control and Optimization, Vol. 50 (2012), No. 3, pp. 1616–1642
[13] Dörfler, Florian and Chertkov, Michael and Bullo, Francesco, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences, Vol. 110 (2013), No. 6, pp. 2005–2010
[14] Dörfler, Florian and Bullo, Francesco, Synchronization in complex networks of phase oscillators: A survey, Automatica, Vol. 50 (2014), No. 6, pp. 1539–1564
[15] Daido, Hiroaki, Lower critical dimension for populations of oscillators with randomly distributed frequencies: a renormalization-group analysis, Physical review letters, Vol. 61 (1988), No. 2, pp. 231
[16] Dong, Jiu-Gang and Xue, Xiaoping, Synchronization analysis of Kuramoto oscillators, Communications in Mathematical Sciences, Vol 11 (2013), No. 2, pp. 465–480
[17] Ermentrout, Bard, An adaptive model for synchrony in the firefly Pteroptyx malaccae, Journal of Mathematical Biology, Vol. 29 (1991), No. 6, pp. 571–585
[18] Fountain, Leonard and Jackson, Lloyd, A generalized solution of the boundary value problem for y′′ = f(x, y, y′), Pacific Journal of Mathematics, Vol. 12 (1962), No. 4, pp. 1251–1272
[19] Guo, Yufeng and Wang, Qi and Yang, Liu and Zhang, Dongrui and Xue, Xiaoping and Yu, Daren, A transient stability analysis method based on second-order nonuniform Kuramoto model, International Transactions on Electrical Energy Systems, Vol. 30 (2020), No. 3, pp. e12241
[20] Hsia, Chun-Hsiung and Jung, Chang-Yeol and Kwon, Bongsuk, On the synchronization theory of Kuramoto oscillators under the effect of inertia, J. Differential Equations, Vol. 267 (2019), No. 2, 742–775
[21] Hsia, Chun-Hsiung and Jung, Chang-Yeol and Kwon, Bongsuk. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators, Discrete Continuous Dynamical Systems-B, Vol. 24 (2019), No. 7, pp. 3319
[22] Hsia, Chun-Hsiung and Jung, Chang-Yeol and Kwon, Bongsuk and Ueda, Yoshihiro, Synchronization of Kuramoto oscillators with time-delayed interactions and phase lag effect, J. Differential Equations, Vol. 268 (2020), No. 12, pp. 7897–7939
[23] Hong, Hyunsuk and Strogatz, Steven H, Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators, Physical Review Letters, Vol. 106 (2011), No. 5, pp. 054102
[24] Hardin, Paul E and Hall, Jeffrey C and Rosbash, Michael, Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels, Nature, Vol. 343 (1990), No. 6258, pp. 536–540
[25] Ha, Seung-Yeal and Ha, Taeyoung and Kim, Jong-Ho, On the complete synchronization of the Kuramoto phase model, Physica D: Nonlinear Phenomena, Vol. 239 (2010), No. 17, pp. 1692–1700
[26] Ha, Seung-Yeal and Kang, Moon-Jin, On the basin of attractors for the unidirectionally coupled Kuramoto model in a ring, SIAM Journal on Applied Mathematics, Vol. 72 (2012), No. 5, pp. 1549–1574
[27] Ha, Seung-Yeal and Li, Zhuchun and Xue, Xiaoping, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, Journal of Differential Equations, Vol. 255 (2013), No. 10, pp. 3053–3070
[28] Ha, Seung-Yeal and Kim, Hwa Kil and Park, Jinyeong Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, Vol. 28 (2015), No. 5, pp. 1441
[29] Ha, Seung-Yeal and Kim, Hwa Kil and Ryoo, Sang Woo, Emergence of phaselocked states for the Kuramoto model in a large coupling regime, Communications in Mathematical Sciences, Vol. 14 (2016), pp. 1073–1091
[30] Jadbabaie, Ali and Motee, Nader and Barahona, Mauricio, On the stability of the Kuramoto model of coupled nonlinear oscillators, American Control Conference, 2004. Proceedings of the 2004, Vol. 5 (2004), pp. 4296–4301
[31] Jackson, Lloyd and Schrader, Keith, On second order differential inequalities, Proceedings of the American Mathematical Society, Vol. 17 (1966), No. 5, pp. 1023–1027
[32] Kuramoto, Yoshiki, Chemical oscillations, waves, and turbulence, Springer Science Business, Media Vol. 19 (2012)
[33] Lunze, Jan, Complete synchronization of Kuramoto oscillators, Journal of Physics A: Mathematical and Theoretical, Vol. 44 (2011), No. 42, pp. 425102
[34] Li, Zhuchun and Xue, Xiaoping and Yu, Daren, Synchronization and transient stability in power grids based on Łojasiewicz inequalities, SIAM Journal on Control and Optimization, Vol. 52 (2014), No. 4, pp. 2482–2511
[35] Moreno, Yamir and Pacheco, Amalio F, Synchronization of Kuramoto oscillators in scale-free networks, Europhysics Letters, Vol. 68 (2004), No. 4, pp. 603
[36] Néda, Zoltán and Ravasz, Erzsébet and Vicsek, Tamás and Brechet, Yves and Barabási, Albert-Lázló, Physics of the rhythmic applause, Physical Review E, Vol. 61 (2000), No. 6, pp. 6987
[37] Papadopoulos, Lia and Kim, Jason Z and Kurths, Jürgen and Bassett, Danielle S Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators, Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 27 (2017), No. 7, pp. 073115
[38] Rodrigues, Francisco A and Peron, Thomas K DM and Ji, Peng and Kurths, Jürgen, The Kuramoto model in complex networks, Physics Reports, Vol. 610 (2016), pp. 1–98
[39] Rogge, JA and Aeyels, Dirk, Stability of phase locking in a ring of unidirectionally coupled oscillators, Journal of Physics A: Mathematical and General, Vol. 37 (2004), No. 46, pp. 11135
[40] Rosenblum, Michael and Pikovsky, Arkady, Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators, Contemporary Physics, Vol. 44 (2003), No. 5, pp. 401–416
[41] Ren, Quansheng and Zhao, Jianye, Adaptive coupling and enhanced synchronization in coupled phase oscillators, Physical Review E, Vol. 76 (2007), No. 1, pp. 016207
[42] Song, Huihui and Zhang, Xuewei and Wu, Jinjie and Qu, Yanbin, Low-frequency oscillations in coupled phase oscillators with inertia, Physics Reports, Vol. 9 (1) (2019), pp. 1–10
[43] Schrader, Keith, A note on second order differential inequalities, Proceedings of the American Mathematical Society, Vol. 19 (1968), No. 5, pp. 1007–1012
[44] Skardal, Per Sebastian and Arenas, Alex, Control of coupled oscillator networks with application to microgrid technologies, Science advances, Vol. 1 (2015), No. 7, pp. e1500339
[45] Strogatz, Steven H and Mirollo, Renato E, Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies, Physica D: Nonlinear Phenomena, Vol. 31 (1988), No. 2, pp. 143–168
[46] Strogatz, Steven H, Sync: How order emerges from chaos in the universe, nature, and daily life, Hachette UK (2012)
[47] Strutt, John William and Rayleigh, Baron, The theory of sound, Dover (1945)
[48] Trees, BR and Saranathan, V and Stroud, D, Synchronization in disordered Josephson junction arrays: Small-world connections and the Kuramoto model, Physical Review E, Vol. 71 (2005), No. 1, pp. 016215
[49] Van Hemmen, JL and Wreszinski, WF, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, Journal of Statistical Physics, Vol. 72 (1993), No. 1-2, pp. 145–166
[50] Winfree, Arthur T, Biological rhythms and the behavior of populations of coupled oscillators, Journal of theoretical biology, Vol. 16 (1967), No. 1, pp. 15–42
[51] Wiesenfeld, Kurt and Colet, Pere and Strogatz, Steven H, Frequency locking in Josephson arrays: Connection with the Kuramoto model, Physical Review E, Vol. 57 (1998), No. 2, pp. 1563
[52] Yue-E, Feng and Hai-Hong, Li and Jun-Zhong, Yang, Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks, Chinese Physics Letters, Vol. 31 (2014), No. 8, pp. 080503
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70383-
dc.description.abstract本研究為關注雙向聯結之一階與二階藏本模型的同步化問題。在此兩模型中,每個粒子均只與標記號碼為前一個與後一個的粒子有交互作用,換句話說,第 i 個粒子只會與第 i + 1 與 i − 1 這兩個粒子有交互作用而已。在實際應用上,這種交互作用在電路學的串聯是很典型的設計。對於一階模型中,如果每個粒子的自然頻率均相同的情形下,我們首先證明了此模型具有全域的頻率同步。接著,針對初始粒子如果落在指定範圍內,我們提出了兩個相位同步的數學結果。而在每個粒子的自然頻率不完全相同的情形下,如果聯結的力夠大 (或是自然頻率彼此的差距不大),且每個粒子初始均落在一個指定區域內,我們證明出此模型會達到頻率同步,同時我們也提供數值模擬來支持我們所推導出的數學理論。另一方面,我們發展出一套針對二階模型的頻率同步化理論。在此理論中我們證明出,如果連結力夠大、慣性項夠小以及所有粒子初始均落在一個指定範圍內的話,此二階模型會展現出頻率同步的結果。進一步地,如果這些粒子的自然頻率皆相同的話,我們也證明出此二階模型會有相位同步的結果。研究總結與未來相關問題也一併在文章中討論。zh_TW
dc.description.abstractThis article is concerned about the synchronization problem of the first order and the second order bidirectionally coupled Kuramoto model. In these two models, each oscillator only interacts with the oscillators with adjacent labelling numbers. Namely, the oscillator θi only inter-acts with θi+1 and θi-1. In real applications, this is a typical setting of concatenation connection. For the first order model, we first prove the global convergence of frequency synchronization for the identical os-cillators. Also, we present two results of phase synchronization for the identical case in relatively wide initial configuration regimes. In case that the coupling strength is sufficiently large (equivalent to the differ-ence of the natural frequencies is sufficiently small), we show that for non-identical oscillators within a suitable initial configuration regime, the first order bidirectionally coupled Kuramoto model exhibits a fre-quency synchronization. The supportive numerical simulations for the theories of the first order model are presented as well. On the other hand, we develop a frequency synchronization theory for the second or-der bidirectionally coupled Kuramoto model. We prove that this second order model exhibits the frequency synchronization for the non-identical oscillators if the coupling strength is sufficient large (equivalent to the difference of the natural frequencies is sufficiently small), the inertia is sufficiently small, and all oscillators are confined in a certain regime. In addition, we also show that this second order model exhibits the phase synchronization for the identical oscillators. Summary and several future works are discussed in this study as well.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:27:00Z (GMT). No. of bitstreams: 1
U0001-1707202013422400.pdf: 1752515 bytes, checksum: 15cacda3875c769c72d3eb9585c8472a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書i
致謝ii
中文摘要iv
Abstract v
1 Introduction 1
2 First Order Bidirectionally Coupled Kuramoto Model 11
2.1 Preliminaries and Main Results . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Phase and Frequency Synchronization for Identical Oscillators 14
2.1.2 Frequency Synchronization for Non-identical Oscillators . . . 15
2.2 Proof of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Proof of Theorem 2.1.1–Theorem 2.1.3 . . . . . . . . . . . . . 22
2.2.2 Proof of Theorem 2.1.4 . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Simulation for Identical Oscillators . . . . . . . . . . . . . . . 38
2.3.2 Simulation for Non-identical Oscillators . . . . . . . . . . . . 40
3 Second Order Bidirectionally Coupled Kuramoto Model 44
3.1 Preliminaries and Main Results . . . . . . . . . . . . . . . . . . . . . 44
3.1.1 Frequency and Phase Synchronization . . . . . . . . . . . . . 47
3.1.2 Subfunction and Superfunction . . . . . . . . . . . . . . . . . 53
3.2 Proof of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Conclusion 73
4.1 Summary of Main results . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5 Appendix 78
Bibliography 83
dc.language.isoen
dc.subject雙向交互作用zh_TW
dc.subject藏本模型zh_TW
dc.subject同步化zh_TW
dc.subjectsynchronizationen
dc.subjectKuramoto modelen
dc.subjectbidirectional interactionen
dc.title雙向聯結之藏本模型的同步化數學分析zh_TW
dc.titleOn Mathematical Analysis of Synchronization to Bidirectionally Coupled Kuramoto Oscillatorsen
dc.typeThesis
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳俊全(Chiun-Chuan Chen),薛名成(Ming-Cheng Shiue),黃信元(Hsin-Yuan Huang),陳怡全(Yi-Chiuan Chen)
dc.subject.keyword同步化,藏本模型,雙向交互作用,zh_TW
dc.subject.keywordsynchronization,Kuramoto model,bidirectional interaction,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202001598
dc.rights.note有償授權
dc.date.accepted2020-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-1707202013422400.pdf
  未授權公開取用
1.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved