請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70370完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明汝(Ming-Ju Chen) | |
| dc.contributor.author | Yu-Chun Chang | en |
| dc.contributor.author | 張毓純 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:26:44Z | - |
| dc.date.available | 2028-08-13 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | 林慶文。1996。乳品加工學。華香園出版社,臺北,臺灣。
Asioli, D., J. Aschemann-Witzel, V. Caputo, R. Vecchio, A. Annunziata, T. Næs, and P. Varela. 2017. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res Int. 99(1): 58-71. doi:10.1016/j.foodres.2017.07.022 Anal, A. K., and H. Singh. 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 18(5): 240-251. doi:10.1016/j.tifs.2007.01.004 Aziznia, S., A. Khosrowshahi, A. Madadlou, and J. Rahimi. 2008. Whey protein concentrate and gum tragacanth as fat replacers in nonfat yogurt: chemical, physical, and microstructural properties. J. Dairy Sci. 91(7): 2545-2552. doi:10.3168/jds.2007-0875 Bahramparvar, M., and M. M. Tehrani. 2011. Application and functions of stabilizers in ice cream. Food Rev. Int. 27(4): 389-407. doi:10.1080/87559129.2011.563399 Barber, C. E., J. L. Tang, J. X. Feng, M. Q. Pan, T. J. Wilson, H. Slater, J. M. Dow, P. Williams, and M. J. Daniels. 1997. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol. 24(3): 555-566. doi:10.1046/j.1365-2958.1997.3721736.x Bearth, A., M. E. Cousin, and M. Siegrist. 2014. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 38: 14-23. doi:10.1016/j.foodqual.2014.05.008 Boels, I. C., A. Ramos, M. Kleerebezem, and W. M. Devos. 2001. Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl. Environ. Microbiol. 67(7): 3033-3040. doi:10.1128/AEM.67.7.3033-3040.2001 Broadbent, J. R., D. J. McMahon, D. L. Welker, C. J. Oberg, and S. Moineau. 2003. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review 1. J. Dairy Sci. 86(2): 407-423. doi:10.3168/jds.S0022-0302(03)73619-4 Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 100(9): 3877-3886. doi:10.1007/s00253-016-7471-2 Carvalho, A. S., J. Silva, P. Ho, P. Teixeira, F. X. Malcata, and P. Gibbs. 2004. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 14(10): 835-847. doi:10.1016/j.idairyj.2004.02.001 Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le lait. 75(4-5): 463-472. doi:10.1051/lait:19954-536 Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods. 56(1): 27-35. doi:10.1016/j.mimet.2003.09.002 Cody, W. L., J. W. Wilson, D. R. Hendrixson, K. S. McIver, K. E. Hagman, C. M. Ott, C. A. Nickerson, and M. J. Schurr. 2008. Skim milk enhances the preservation of thawed -80°C bacterial stocks. J. Microbiol. Methods. 75(1): 135-138. doi: 10.1016/j.mimet.2008.05.006 Corcoran, B. M., R. P. Ross, G. F. Fitzgerald, and C. Stanton. 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96(5): 1024-1039. doi:10.1111/j.1365-2672.2004.02219.x Dabour, N., E. E. Kheadr, I. Fliss, and G. LaPointe. 2005. Impact of ropy and capsular exopolysaccharide-producing strains of Lactococcus lactis subsp. cremoris on reduced-fat Cheddar cheese production and whey composition. Int. Dairy J. 15(4): 459-471. doi:10.1016/j.idairyj.2004.08.011 Damin, M. R., E. Minowa, M. R. Alcantara, and M. N. Oliveira. 2008. Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. J. Texture Stud. 39(1): 40-55. doi:10.1111/j.1745-4603.2007.00129.x Dave, R. I., and N. P. Shah. 1997. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int. Dairy J. 7(1): 31-41. doi:10.1016/S0958-6946(96)00046-5 Davies, M. A. P., and L. T. Wright. 1994. The importance of labelling examined in food marketing. Eur. J. Mark. 28(2): 57-67. doi:10.1108/03090569410055283 Desmond, C., C. Stanton, G. F. Fitzgerald, K. Collins, and R. P. Ross. 2001. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 11(10): 801-808. doi:10.1016/S0958-6946(01)00121-2 Dubois, M., K. A. Gilles, J. K. Hamilton, and P. A. Rebers. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3): 350-356. doi:10.1021/ac60111a017 Everington, D. W. 1991. “Food freezing: Today and tomorrow” The special problems of freezing ice cream. Springer-Verlag, NY, USA. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evol. 39(4): 783-791. doi:10.1111/j.1558-5646.1985.tb00420.x Forde, A., and Fitzgerald. G. F. 1999. Bacteriophage defence systems in lactic acid bacteria. Lactic Acid Bacteria: Genetics, Metabolism and Applications. 76:89-113. doi:10.1007/978-94-017-2027-4_4 GarcÂõa-Ochoa, F., V. E. Santos, J.A. Casas, and E. GoÂmez. 2000. Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18(7): 549-579. doi:10.1016/S0734-9750(00)00050-1 Guven, M., K. Yasar, O. B. Karaca, and A. A. Hayaloglu. 2005. The effect of inulin as a fat replacer on the quality of set‐type low‐fat yogurt manufacture. Int. Dairy J. Technol. 58: 180-184. doi:10.1111/j.1471-0307.2005.00210.x Haque, Z. U., and T. Ji. 2003. Cheddar whey processing and source: II. Effect on non-fat ice cream and yoghurt. Int. J. Food Sci. Tech. 38(4): 463-473. doi:10.1046/j.1365-2621.2003.00705 Harrigan, W. F. 1998. Laboratory methods in food microbiology. Academic Press, San Diego, CA, USA. Hassan, A. N. 2008. ADSA Foundation scholar award: Possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J. Dairy Sci. 91(4): 1282-1298. doi:10.3168/jds.2007-0558. Hidalgo-Cantabrana, C., B. Sánchez, C. Milani, M. Ventura, A. Margolles, and P. Ruas-Madiedo. 2014. Overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl. Environ. Microbiol. 80(9): 9-18. doi:10.1128/AEM.02977-13 Jansson, P. E., B. Lindberg, and P. A. Sandford. 1983. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 124(1): 135-139. doi:10.1016/0008-6215(83)88361-X Kim W. S., J. Ren, and N. W. Dunn. 1999. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol. Lett. 171(1): 57-65. doi:10.1111/j.1574-6968.1999.tb13412.x Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16(2): 111-120. Kumar, S., G. Stecher, and T. Koichiro. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(7): 1870-1874. doi:10.1093/molbev/msw054 Kunamneni, A., K. Permaul, and S. Singh. 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J. Biosci. Bioeng. 100(2): 168-171. doi:10.1263/jbb.100.168 Kuraishi, C., K. Yamazaki, and Y. Susa. 2001. Transglutaminase: its utilization in the food industry. Foods Rev. Int. 17(2): 221-246. doi:10.1081/FRI-100001258 Laws, A. P., V. M. Marshall. 2001. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int. Dairy J. 11(9): 709-721. doi:10.1016/S0958-6946(01)00115-7 Looijesteijn, P. J., I. C. Boels, M. Kleerebezem, and J. Hugenholtz. 1999. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. J. Appl. Environ. Microbiol. 65(11): 5003-5008. doi:10.1046/j.1365-2672.2000.01082.x Looijesteijn, P. J., L. Trapet, E. de Vries, T. Abee, and J. Hugenholtz. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64(1-2): 71-80. doi:10.1016/S0168-1605(00)00437-2 Lugito, H., N. Pratama, and A. Kurniawan. 2016. A lethal case of Sphingomonas paucimobilis bacteremia in an immunocompromised patient. Case. Rep. Infect. Dis. 2016: 4. doi:10.1155/2016/3294639 Marafon, A. P., A. Sumi, D. Granato, M. R. Alcântara, A. Y. Tamime, and M. N. Oliveira. 2011. Effects of partially replacing skimmed milk powder with dairy ingredients on rheology, sensory profiling, and microstructure of probiotic stirred-type yogurt during cold storage. J. Dairy Sci. 94(11): 5330-5340. doi: 10.3168/jds.2011-4366 Mani-López, E., Palou, and A. López-Malo. 2014. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 97(5): 2578-2590. doi:10.3168/jds.2013-7551 Mao, R., J. Tang, and B.G. Swanson. 2000. Texture properties of high and low acyl mixed gellan gels. Carbohydr. Polym. 41(4): 331-338. doi:10.1016/S0144-8617(99)00108-3 Medina, L. M., and R. Jordano. 1994. Survival of constitutive microflora in commercially fermented milk containing bifidobacteria during refrigerated storage. J. Food Prot. 57(8): 731-733. doi:10.4315/0362-028X-57.8.731 Meilgaard, M. C., B. T. Carr, and G. V. Civille. 1999. Sensory evaluation techniques. CRC press. Boca Raton, FL, U.S.A. Motoki, M., and K. Seguro. 1998. Transglutaminase and its use for food processing. Trends Food Sci. Technol.. 9(5): 204-210. doi:10.1016/S0924-2244(98)00038-7 Mudgil, D., S. Barak, and B. S. Khatkar. 2014. Guar gum: processing, properties and food applications-A Review. J. Food Sci. Technol. 51(3): 409-418. doi:10.1007/s13197-011-0522-x Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002a. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12(2-3): 163-171. doi:10.1016/S0958-6946(01)00160-1 Patel, S., A. Majumder, and A. Goyal. 2012. Potentials of exopolysaccharides from lactic acid bacteria. Indian J. Microbiol. 52(1): 3-12. doi:10.1007/s12088-011-0148-8 Perry, D. B., D. J. McMahon, and C. J. Oberg. 1997. Effect of exopolysaccharide-producing cultures on moisture retention in low-fat mozzarella cheese. J. Dairy Sci. 80(5): 799-805. doi:10.3168/jds.S0022-0302(97)76000-4 Prado, M. R., L. M. Blandón, L. P. Vandenberghe, C. Rodrigues, G. R. Castro, V. Thomaz-Soccol and C. R. Soccol. 2015. Milk kefir: composition, microbial cultures, biological activities, and related products. Front. Microbiol. 6: 1177. doi:10.3389/fmicb.2015.01177 Prasanna, P. H. P., A. S. Grandison and D. Charalampopoulos. 2013. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide producing Bifidobacterium strains. Food Res. Int. 51(1): 15-22. doi:10.1016/j.foodres.2012.11.016 Ruas-Madiedo, P., R. Tuinier, M. Kanning, and P. Zoon. 2002b. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12(8): 689-695. doi:10.1016/S0958-6946(01)00161-3 Ruas-Madiedo, P., and C.G. de los Reyes-Gavilán. 2005. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88(3): 843-856. doi:10.3168/jds.S0022-0302(05)72750-8 Saarela, M., I. Virkajärvi, H. L. Alakomi, P. Sigvart-Mattila, and J. Mättö. 2006. Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. Int. Dairy J. 16(12): 1477-1482. doi:10.1016/j.idairyj.2005.12.007 Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4(4): 406-425. doi:10.1093/oxfordjournals.molbev.a040454 Sandrou, D. K., and I. S. Arvanitoyannis. 2010. Low-fat/calorie foods: Current state and perspectives, critical reviews in food science and nutrition. Crit. Rev. Food Sci. Nutr. 40(5): 427-447. doi:10.1080/10408690091189211 Sánchez, J. I., B. Martínez, R. Guillén, R. Jiménez-Díaz, and A. Rodríguez. 2006. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl. Environ. Microbiol. 72(12): 7495-7502. doi: 10.1128/AEM.01078-06 Santivarangkna, C., U. Kulozik, and P. Foerst. 2007. Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol. Prog. 23(2): 302-315. doi:10.1021/bp060268f Schirle‐Keller, J., G. Reineccius, and L. Hatchwell. 1994. Flavor interactions with fat replacers: Effect of oil level. J. Food Sci. 59(4): 813-815. doi:10.1111/j.1365-2621.1994.tb08134 Sehar, S., and I. Naz. 2016. Role of the biofilms in wastewater treatment. In microbial biofilms-importance and applications. InTech. doi:10.5772/63499 Singh, H., and L. K. Creamer. 1991. Denaturation, aggregation and heat stability of milk protein during the manufacture of skim milk powder. J. Dairy Res. 58(3): 269-283. doi:10.1017/S002202990002985X Stephens, M. L., and G. Lyberatos. 1988. Effect of cycling on the stability of plasmid‐bearing microorganisms in continuous culture. Biotechnol. Bioeng. 31(5): 464-469. doi:10.1002/bit.260310511 Strasser, S., M. Neureiter, M. Geppl, R. Bruan, and H. Danner. 2009. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J. Appl. Microbiol. 107(1): 167-177. doi:10.1111/j.1365-2672.2009.04192.x Tanigawa, K., H. Kawabata, and K. Watanabe. 2010. Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 76(12): 4055-4062. doi:10.1128/AEM.02698-09. Thakur, B. R., R. K. Singh, and A. K. Handa. 1997. Chemistry and uses of pectin - a review. Crit. Rev. Food Sci. Nutrition. 37(1): 47-73. doi: 10.1080/10408399709527767 Tuinier, R., P. Zoon, C. Olieman, M. A. Cohen Stuart, G. J. Fleer, and C. G. De Kruif. 1999. Isolation and physical characterization of an exocellular polysaccharide. Biopolymers: Original Research on Biomolecules. 49(1) :1-9. doi:10.1002/(SICI)1097-0282(199901)49:1<1::AID-BIP1>3.0.CO;2-B Van de Velde, F., N. Lourenço, H. Pinheiro and M. Bakker. 2002. Carrageenan: A food‐grade and biocompatible support for immobilisation techniques. Adv. Synth. Catal. 344(8): 815-835. doi: 10.1002/1615-4169(200209)344:8<815:AID- Vinderola, C. G., N. Bailo and J. A. Reinheimer. 2000. Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res. Int. 33(2): 97-102. doi:10.1016/S0963-9969(00)00011-9 Wang, S. Y., H. C. Chen, J. R. Liu, C. Y. Lin, Y. C. and Chen, M. J. 2008. Identification of yeasts and evaluation of their distribution in Taiwanese kefir and viili starters. J. Dairy Sci. 91(10): 3798-3805. doi:10.3168/jds.2007-0468 Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24: 1313-1325. doi:10.1007/s11274-007-9604-3 Welman, A. D. and I. S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21(6): 269-274. doi:10.1016/S0167-7799(03)00107-0 Yuksekdag, Z. N. and B. Aslim 2008. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Braz. Arch. Biol. Technol. 51(3): 581-585. doi:10.1590/S1516-89132008000300019 Yvon, M., S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon. 1997. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol. 63(2): 414-419 Zhang, L. M. 2001. New water‐soluble cellulosic polymers: A review. Macromol. Mater. Eng. 286: 267-275. doi:10.1002/1439-2054(20010501)286:5<267::AID-MAM E267>3.0.CO;2-3 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70370 | - |
| dc.description.abstract | 因現今消費者為了控制卡路里攝取量而購買低脂乳製品,然而去除乳製品中的脂肪會造成一些質地、色澤和風味上的缺陷。在商業上會利用添加多醣類物質作為安定劑 (stabilizer) 或水合劑 (water-binding agent) 改善低脂產品的質地,然而隨著消費水平的增長以及食安議題的延伸,消費者會偏向購買較少或是無食品添加劑的「潔淨標示」 (clean label) 產品。因此希望利用乳酸菌 (lactic acid bacteria, LAB) 於發酵期間自體產生並釋放到產品中的胞外多醣 (exopolysaccharide, EPS) 去提升低脂發酵乳製品的品質,開發出潔淨標示的產品。根據乳酸菌胞外多醣生產能力可以分為產黏 (ropy) 乳酸菌和不產黏 (nonropy) 乳酸菌,其中產黏乳酸菌所產生的胞外多醣在提升產品的質地上有較好的能力。臺灣黏質發酵乳 (Taiwanese ropy fermented milk, TRFM) 是本實驗室長期繼代及保存的發酵乳製品,質地十分黏稠且延展力強。由於質地和風味與傳統的北歐發酵牛奶viili相似,亦被稱為Taiwanese viili。在本研究中擬自臺灣黏質發酵乳中分離出產黏乳酸菌,進而利用其產生的胞外多醣之特性去製作低脂發酵乳。
首先自臺灣黏質發酵乳中篩選出40個單一分離菌落,利用革蘭氏染色法去除革蘭氏陰性細菌和酵母,留下34個分離菌落 (isolate) 。將分離菌落接種在MRS培養基中後,以震盪後懸浮的型態選擇了13個產黏的單一分離菌落。使用隨機增幅多態性DNA聚合酶連鎖反應 (random amplified polymorphic DNA-polymerase chain reaction, RAPD-PCR) 、16S rRNA序列以及API50進一步分類和鑑定,利用隨機增幅多態性DNA聚合酶連鎖反應的結果將13個分離菌落分成兩組,根據16s rRNA基因分析以及API 50 CHL的結果將菌株鑑定為Lactococcus lactis subsp. cremoris,並且命名為Lactococcus lactis subsp. cremoris APL15 (APL15) 和Lactococcus lactis subsp. cremoris APL16 (APL16) 。由於APL15以及APL16這兩株菌在胞外多醣產量上沒有顯著差異 (P>0.05) ,因此以這兩株菌皆進行第二部分實驗低脂發酵乳的製作。 在低脂發酵乳生產的部分,將低脂牛奶中接種1% APL15以及APL16,於26°C發酵24小時,分析物理特性和微生物菌數。結果顯示APL15和APL16可以在24小時內使發酵乳酸鹼值達pH 4.3,酸度大於0.7%,與市售產品的酸鹼值相近;且兩種樣品中的活菌均高於109 CFU/g,符合國家標準CNS3058活菌發酵乳的菌數(每毫升菌數高於107 CFU)。離水性以及流變能力的測定的結果也顯示APL15、APL16和添加安定劑的商業發酵乳產品沒有顯著差異 (P>0.05) ,證明產黏乳酸菌所產生的胞外多醣可以作為低脂發酵乳的安定劑。在酸及膽鹽耐受性測中,pH 3和膽鹽0.5%是APL15和APL16的致死條件;當pH達2.5、膽鹽濃度1%時APL15和APL16皆無法存活,未來可利用適應性實驗或是微膠囊包覆的形式使通過人體腸胃道的菌數提升。在產品保存試驗中組別APL15號APL16在pH值、酸度以及離水性在保存期間並無顯著差異 (P>0.05) ,然而菌數在十四天皆顯著降低 (P<0.05) 且低於107 CFU/g。冷凍乾燥後兩種菌株菌粉中的菌數都高於108 CFU/g,保存兩個月後仍然可以進行發酵乳製作,且以凍乾菌粉製作之發酵乳酸鹼值、可滴定酸度以及發酵乳中菌數與以凍管製作的產品並無太大差異。 根據上述研究結果,產黏乳酸菌所產生的胞外多醣可以減少或代替商業安定劑。 | zh_TW |
| dc.description.abstract | Low-fat dairy products with reduced calories and fat might have the good market potential to meet the consumers’ need. However, removal of fat in dairy products creates several physical defects including poor texture, black color development and lack of flavor. During the process, the addition of polysaccharides could perform as stabilizers or water-binding agents to increase fermented dairy properties. Additionally, the consumers are preferring to buy “clean label” products with less artificial food additives. Exopolysaccharides (EPS) from lactic acid bacteria (LAB) are widely used in the dairy products such as yogurt, cheese, and butter. Based on their EPS-producing ability, LAB could be classified into ropy and nonropy. Ropy starter cultures could produce EPS, a natural water-binding agent, which improves moisture retention and reduces whey off in dairy products. Taiwanese ropy fermented milk (TRFM) is a dairy product showing great extension ability and viscosity. It is also referring to Taiwanese viili due to the similarity of texture and flavor to a traditional Nordic fermented milk, viili. In this study, we would like produce a fermented milk with ropy LAB, isolated from TRFM.
A total of 40 isolates were selected from Taiwanese ropy fermented milk. After Gram staining test to remove Gram-negative bacteria and yeast, 34 isolates were remained. Isolates were then selected according to the flame-like suspension in MRS broth. These isolates were further typed and identified using random amplified polymorphic DNA-polymerase chain reaction PCR (RAPD-PCR), 16S rRNA sequencing and API CHL 50. Results indicated that 13 isolates were categorized into 2 different groups based on their RAPD-PCR profiles. All of them were identified as Lactococcus lactis subsp. cremoris using 16s rRNA gene analysis and API50. One strain was picked from each group and compared their EPS production. No significant difference was found between Lactococcus lactis subsp. cremoris APL15 (APL15) and Lactococcus lactis subsp. cremoris APL16 (APL16) in EPS production (P>0.05). Therefore, both strains were selected for fermented milk production. For fermented milk production, 1% APL15 and APL16 isolated from TRFM were inoculated in low fat milk at 26°C for 24 hours. Physiochemical and microbial properties were analyzed. Results indicated that both samples with APL15 and APL16 could reach pH 4.3 and acidity 0.7% in 24 hours, which is a necessary condition for a commercial fermented milk product. Viable cell counts in both samples were higher than 109 CFU/g, an important characteristic for probiotic products to provide health benefits on human beings. The results of syneresis and rheology tests also showed that no difference was found among samples and commercial fermented milk product with stabilizer, indicating EPS from LAB can act as stabilizer in products. For gastrointestinal stresses test, pH 3 and bile salt 0.5% were lethal conditions for APL15 and APL16. Stress adaptation and microencapsulation might improve survival rate under human gastrointestinal stresses. After freeze drying, the bacterial counts for both strains were higher than 108 CFU/g. This study showed that it was possible to reduce or replace commercial stabilizers in the low-fat fermented milk production with EPS producing LAB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:44Z (GMT). No. of bitstreams: 1 ntu-107-R05626021-1.pdf: 38869126 bytes, checksum: 8f98988a35f9a36164e496b9af310bce (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 壹、文獻探討 1
一、低脂乳製品 1 (一)常見缺陷 1 (二)改善方法 1 二、潔淨標示 (Clean label) 5 三、胞外多醣 6 (一)微生物生產之胞外多醣 6 (二)胞外多醣之功能 10 四、臺灣黏質發酵乳 (Taiwanese ropy fermented milk, TRFM) 12 貳、研究動機 19 參、材料與方法 20 一、實驗材料 20 (一)篩菌來源 20 (二)微生物培養基 20 二、實驗方法 20 (一)自臺灣黏質發酵乳中篩選黏質乳酸菌 21 (二)菌株保存及鑑定 22 (三)產胞外多醣乳酸菌應用於低脂發酵乳的製作 29 肆、結果 33 一、自臺灣黏質發酵乳篩選產生胞外多醣乳酸菌分離及鑑定 33 (一)Harrison’s disc篩菌結果 33 (二)革蘭氏染色 33 (三)產胞外多醣菌株初步篩選 34 (四)利用RAPD-PCR進行分類 (Typing) 34 (五)16S rRNA序列分析 35 (六)分離菌株之碳源利用 36 (七)胞外多醣產量 36 (八)發酵期間酸鹼值及可滴定酸度變化 51 (九)發酵期間菌數變化 51 (十)發酵乳物化特性 51 (十一)發酵乳流變性 52 (十二)發酵乳中微生物在不同酸鹼值及膽鹽濃度下之耐受性 52 (十三)感官品評 53 (十四)發酵乳保存性試驗 54 (十五)菌液凍乾後脫水率及菌數 56 (十六)菌粉凍乾後保存期間菌數變化 57 (十七)菌粉發酵能力 57 伍、討論 80 陸、結論 86 柒、附錄 88 捌、參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 胞外多醣 | zh_TW |
| dc.subject | 臺灣傳統黏質發酵乳 | zh_TW |
| dc.subject | 潔淨標示 | zh_TW |
| dc.subject | 乳酸菌 | zh_TW |
| dc.subject | 低脂 | zh_TW |
| dc.subject | Taiwanese ropy fermented milk | en |
| dc.subject | clean label | en |
| dc.subject | exopolysaccharide | en |
| dc.subject | low fat | en |
| dc.subject | lactic acid bacteria | en |
| dc.title | 自臺灣黏質發酵乳分離鑑定產胞外多醣乳酸菌應用於製造及改善低脂發酵乳之缺陷 | zh_TW |
| dc.title | Isolation and identification of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk for low-fat fermented milk production | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王聖耀,江明倫,徐志安,郭卿雲 | |
| dc.subject.keyword | 臺灣傳統黏質發酵乳,潔淨標示,胞外多醣,乳酸菌,低脂, | zh_TW |
| dc.subject.keyword | Taiwanese ropy fermented milk,clean label,exopolysaccharide,lactic acid bacteria,low fat, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU201803207 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 37.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
