請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70363
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾 | |
dc.contributor.author | Shing-Shan Tsai | en |
dc.contributor.author | 蔡幸珊 | zh_TW |
dc.date.accessioned | 2021-06-17T04:26:35Z | - |
dc.date.available | 2023-08-20 | |
dc.date.copyright | 2018-08-20 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.citation | 王怡景. 2010. 碳氮對文心蘭生長與開花之影響. 臺灣大學園藝學研究所碩士論文. 臺北.
王再花、朱根發、曹君喜、章金輝、葉慶生. 2011. 不同 N, P, K 水平施肥對春石斛營養生長和開花的影響 中國農學通報 27: 248-254 王雁、周進昌、鄭寶強、陳振皇、皇禎宏. 2014. 石斛蘭. 中國林業出版社.北京. 李文南. 2016. 速效肥濃度對春石斛一年生苗株生長影響. 臺東區農業專訊 91: 4-8 李文南. 2016. 肥培濃度對二年生春石斛當代假球莖生長之影響. 臺東區農業改良場研究彙報 26: 73-90 李哖. 1991. 蝴蝶蘭之幼年性. 園藝作物產期調節研討會專集Ⅱ.臺中區農業改良場編印. p. 77-86 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化. 中國園藝43: 295-305. 李哖、林菁敏. 1984. 溫度對白花蝴蝶蘭生長與開花之影響. 中國園藝 30:223-231. 李哖、林菁敏. 1987. 蝴蝶蘭之花期調節. 園藝作物產期調節研討會專集. 臺中區農業改良場特刊第10號. p. 27-44 李哖、李嘉慧. 1996. 蝴蝶蘭花芽誘引和花序發育時之碳水化合物變化. 中國園藝 42: 262-275 何鐵光、楊麗濤、李楊瑞、王燦琴、黄岛平. 2007. 鐵皮石斛原球莖多醣 DCPP1a-1 的理化性質及抗腫瘤活性. 天然產物研究與開發 19: 578-583. 林仁安. 2017. 碳氮濃度及碳氮比對蝴蝶蘭及春石斛開花之影響. 臺灣大學園藝學研究所碩士論文. 臺北. 林菁敏、李哖. 1988. 蝴蝶蘭葉面積之估算與溫度對葉片生長之影響. 中國園藝 34: 73-80 徐懷恩、林瑞松. 1997. 文心蘭生育習性之研究. 興大園藝123:134. 秦子芳、譚曉妍、寧慧娟、胡静、苗雨欣、張秀清. 2018. 不同生長年限鐵皮石斛多糖含量與特性分析. 食品科學 39: 189-193. 張耀乾. 2013. 蝴蝶蘭對氮的吸收與分配及其在肥培管理上的意涵. 2013台灣國際蘭花研討會論文集. p. 157-190. 黃敏展. 2002. 亞熱帶花卉學總論. 國立中興大學園藝系. 臺中. 臺灣. 歐錫坤. 1981. 果樹之幼年性與開花. 中國園藝 27: 1-9. 蔡媦婷. 2011. 日本之春石斛蘭花產業及基礎生理研究. 植物種苗 13: 1-18. 薛利紅、楊林章、范小暉. 2006. 基於碳氮代谢的水稻氮含量及碳氮比光谱估測. 作物學報32:430-435. 羅妙禎. 2014. 大白花蝴蝶蘭'V3'於養分逆境下的生理反應及缺磷下的基因表現. 臺灣大學園藝學研究所碩士論文. 臺北. Adriano, N.N., A.R. Fernie, and M. Stitt. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 3:973-996. Aspinall, G.O. 1982. General introduction. p. l-18. In: G.O. Aspinall(ed.). The Polysaccharides, Vol. 1. Academic Press, New York. Ball, S., Y. Qian, and C. Stushnoff. 2002. Soluble carbohydrates in two buffalograss cultivars with contrasting freezing tolerance. J. Amer. Soc. Hort. Sci.127:45-49. Bichsel, R.G., T.W. Starman, and Y.T. Wang. 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile dendrobium as a potted orchid. HortScience. 43:328-332. Buléon, A., P. Colonna, V. Planchot, and S. Ball. 1998. Starch granules: Structure and biosynthesis. Intl. J. Biol. Macromol. 23:85-112. Chiang, Y.L. and Y.R. Chen. 1968. Observations on Pleione Formosana Hayata. Taiwania. 14:271-301. Corbesier, L., G. Bernier, and C. Périlleux. 2002. C: N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol. 43:684-688. Farrar, J., C. Pollock, and J. Gallagher. 2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci. 154:1-11. Hambrick, C., F. Davies, and H. Pemberton. 1991. Seasonal changes in carbohydrate/nitrogen levels during field rooting of Rosa multiflora ‘brooks 56’ hardwood cuttings. Scientia Hort. 46:137-146. Hendry, G.A.F. and R.K. Wallace. 1993. The origin, distribution, and evolutionary significance of fructans p. 119-139. In: M. Suzuki, and N. J Chatterton(eds). Science and technology of fructans. CRC Press, Fla, U.S. Herold, A. and D. Lewis. 1977. Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79:1-40. Hew, C. and J. Yong. 1994. Growth and photosynthesis of Oncidium ‘Goldiana’. J. Hort. Sci. 69:809-819. Hew, C. and J.W. Yong. 2004. The physiology of tropical orchids in relation to the industry. World Scientific, Sigapore. Ho, L. and J. Thornley. 1978. Energy requirements for assimilate translocation from mature tomato leaves. Ann. Bot. 42:481-483. Holm, J., I. Björck, A. Drews, and N.G. Asp. 1986. A rapid method for the analysis of starch. Starch‐Stärke 38:224-226. Hsu, Y.M., M.J. Tseng, and C.H. Lin. 1999. The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees. Bot. Bul. Acad. Sinica 40:193-198. Hua, Y.F., M. Zhang, C.X. Fu, Z.H. Chen, and G.Y.S. Chan. 2004. Structural characterization of a 2-O-acetylglucomannan from Dendrobium officinale stem. Carbohyd. Res. 339:2219-2224. Kataoka, K., K. Sumitomo, T. Fudano, and K. Kawase. 2004. Changes in sugar content of Phalaenopsis leaves before floral transition. Scientia Hort. 102: 121-132. Kim, Y. J., H.J. Lee, and K.S. Kim. 2013. Carbohydrate changes in Cymbidium ‘Red Fire’in response to night interruption. Scientia Hort. 162: 82-89. Koch, K.E. 1997. Molecular crosstalk and the regulation of C-and N-responsive genes, p. 105-124. In: C. Foyer(ed.). A molecular approach to primary metabolism in higher plants. CRC Press, Fla, U.S. Kubota, S. and K. Yoneda. 1993. Effects of light intensity on developmental and nutritional status of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 62:173-179. Lin, J.A. and Y.C.A. Chang. 2017. Partitioning of nitrogen and carbon in Phalaenopsis and their progressive changes with plant growth and development. HortScience 52:1530-1536. Luo, A., X. He, S. Zhou, Y. Fan, T. He, and Z. Chun. 2009. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile lindl. extracts. Intl. J. Biol. Macromol. 45:359-363. Mandal, D., A. Sarkar, and B. Ghosh. 2014. Induction of flowering by use of chemicals and cincturing in 'bombai' litchi. Acta Hort. 1029:265-271. Matsuo, T. and T. Mizuno. 1974. Changes in the amounts of two kinds of reserve glucose-containing polysaccharides during germination of the easter lity bulb. Plant Cell Physiol. 15:555-558. Miller, W.B. 1992. A review of carbohydrate metabolism in geophytes. Acta Hort. 325:239-246 Ng, C.K.Y. and C.S. Hew. 2000. Orchid pseudobulbs–'false' bulbs with a genuine importance in orchid growth and survival! Scientia Hort. 83:165-172. Ohyama, T., T. Ikarashi, T. Matsubara, and A. Baba. 1988. Behavior of carbohydrates in mother and daughter bulbs of tulips (Tulipa gesneriana). Soil Sci. Plant Nutr. 34:405-415. Pollock, C. 1986. Fructans and the metabolism of sucrose in vascular plants. New Phytol. 104:1-24. Ranwala, A.P. and W.B. Miller. 2008. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high‐performance anion‐exchange chromatography with pulsed amperometric detection. New Phytol. 180:421-433. Rapoport, H.F., S.B. Hammami, P. Martins, O. Pérez-Priego, and F. Orgaz. 2012. Influence of water deficits at different times during olive tree inflorescence and flower development. Environ. Expt. Bot. 77:227-233. Rassi, Z. E. (ed.). 1994. Carbohydrate analysis: high performance liquid chromatography and capillary electrophoresis. Elsevier, N.J. Sakanishi, Y., H. Imanishi, and G. Ishida. 1980. Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bul. Univ. Osaka Prefecture. 32:1-9 Stern, W.L. and W. Whitten. 1999. Comparative vegetative anatomy of Stanhopeinae (Orchidaceae). Bot. J. Linnean Soc. 129:87-103. Susilo, H., Y.C. Peng, S.C. Lee, Y.C. Chen, and Y.C.A. Chang. 2013. The uptake and partitioning of nitrogen in Phalaenopsis Sogo Yukidian ‘V3’as shown by 15N as a tracer. J. Amer. Soc. Hort. Sci. 138:229-237. Suto, K., K. Tsutsui, and K. Sinoda. 1984. Effects of temperature and nitrogen nutrition on the growth and flowering in nobile-type Dendrobium. Bul. Veg. Ornamental Crops Res. Sta. 12:65-83. Van Doorn, W.G. and U. Van Meeteren. 2003. Flower opening and closure: a review. J. Expt. Bot. 54:1801-1812. Vijn, I. and S. Smeekens. 1999. Fructan: more than a reserve carbohydrate? Plant Physiol. 120:351-360. Volaire, F. and H. Thomas. 1995. Effects of drought on water relations, mineral uptake, water-soluble carbohydrate accumulation and survival of two contrasting populations of cocksfoot (Dactylis glomerata L.). Ann. Bot. 75:513-524. Wang, C.Y., C.Y. Chiou, H.L. Wang, R. Krishnamurthy, S. Venkatagiri, J. Tan, and K.W. Yeh. 2008. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227:1063-1077. Wang, J.H., X.Q. Zha, J.P. Luo, and X.F. Yang. 2010. An acetylated galactomannoglucan from the stems of Dendrobium nobile Lindl. Carbohyd. Res. 345:1023-1027. Wangsin, N. and T. Pankasemsuk. 2005. Effect of potassium chlorate on flowering, total nitrogen, total nonstructural carbohydrate, C/N ratio, and contents of cytokinin-like and gibberellin-like substances in stem apex 'do' longan. Acta Hort. 665:255-258. Wolosiuk, R. and H. Pontis. 1974. The role of sucrose and sucrose synthetase in carbohydrate plant metabolism. Mol. Cellular Biochem. 4:115-123. Wu, C.W., K.H. Lin, M.C. Lee, Y.L. Peng, T.Y. Chou, and Y.S. Chang. 2015. Using chlorophyll fluorescence and vegetation indices to predict the timing of nitrogen demand in Pentas lanceolata. Korean J. Hort. Sci. Technol. 33:845-853. Xia, M. 1993. The relationship between sugar‐nitrogen ratio and reproductive organs abscission in faba bean (Vicia faba L.). J. Agron. Crop Sci. 170:348-353. Xing, X., S.W. Cui, S. Nie, G.O. Phillips, H.D. Goff, and Q. Wang. 2013. A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from dendrobium plants. Bioactive Carbohyd. Dietary Fibre 1:131-147. Yap, Y.M., C.S. Loh, and B.L. Ong. 2008. Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism. Scientia Hort. 119:59-66. Yoneda, K., H. Momose, and S. Kubota. 1991. Effects of daylength and temperature on flowering in juvenile and adult Phalaenopsis plants. J. Jpn. Soc. Hort. Sci. 60:651-657. Yong, J. and C. Hew. 1995a. The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Intl. J. Plant Sci. 156:450-459. Yong, J. and C. Hew. 1995b. Partitioning of 14C assimilates between sources and sinks during different growth stages in the sympodial thin-leaved orchid Oncidium Goldiana. Intl. J. Plant Sci. 156:188-196. Zha, X.Q., J.P. Luo, S.Z. Luo, and S.T. Jiang. 2007. Structure identification of a new immunostimulating polysaccharide from the stems of Dendrobium huoshanense. Carbohyd.polymers 69:86-93. Zheng, Z.L. 2009. Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling Behavior 4:584-591. Zimmerman, J.K. 1990. Role of pseudobulbs in growth and flowering of Catasetum viridiflavum (Orchidaceae). Amer. J. Bot. 77:533-542. Zotz, G. 1999. What are backshoots good for? Seasonal changes in mineral, carbohydrate and water content of different organs of the epiphytic orchid, Dimerandra emarginata. Ann. of Bot. 84:791-798. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70363 | - |
dc.description.abstract | 蝴蝶蘭為臺灣重要之外銷花卉作物,而花形、色彩繽紛之春石斛被視為未來國際市場的新興花卉。植體碳氮比 (C/N ratio) 為植體中碳濃度和氮濃度的比例,高碳氮比被認為能促進生殖生長,低碳氮比被認為能促進營養生長甚至抑制開花,然植體碳氮比對於蘭花開花之影響研究鮮少。故本研究以春石斛 ( Dendrobium spp. ) 和蝴蝶蘭( Phalaenopsis spp. ) 為試驗材料,探討不同生育階段之碳氮養分變化,以及碳氮比對於蝴蝶蘭及春石斛開花之影響。
雜交春石斛 (Dendrobium Lai’s Yukisakura) 在生殖生長階段之植體碳濃度在花苞可見期有最小值46.2%,其他階段則無明顯變化 (47.1%-47.7%)。植體氮濃度在催花期間由1.03%下降至0.88%,在花苞可見期回升至1.13%。而春石斛植體碳氮比受氮濃度之影響,在催花期間由47.2上升至54.6,在花苞可見期下降至41.6。低溫催花期間,春石斛植體累積較多蔗糖和澱粉以供後續花序發育所需。 將春石斛易開花品種 (Den. Snow Princess × Den. Lucky Angel) 和不易開花品種 (Den. Oriental Smile × Den. Stardust ‘FireBird’) 依植株高度由高至低分為四個等級,並分析其葉片之碳氮濃度。易開花品種之葉片碳氮比較不易開花品種高,而不易開花品種之葉片碳氮比隨等級逐漸降低而有下降之趨勢。易開花品種之春石斛葉片碳氮比與腋芽可見日數之間沒有相關,然而在不易開花品種之春石斛葉片碳氮比與腋芽可見日數呈負相關 (r = - 0.64**)。兩品種葉片碳氮比與腋芽數和花朵數之關係皆呈正相關,葉片碳氮比越高,春石斛植體腋芽數和花朵數越多。試驗結果顯示春石斛葉片碳氮比可做為後續腋芽萌發數和花朵數之指標,低碳氮比導致其開花品質下降。 低溫催花前給予春石斛2個月的短期氮肥處理,氮肥濃度分別為0 ppm 、10 ppm、100 ppm和200 ppm。在施肥後到花朵開放期間,春石斛植體氮濃度隨施用氮肥濃度增加而上升。而植體碳氮比受氮濃度影響,隨施用氮肥濃度增加而下降。在200 ppm氮肥處理下,當代假球莖上萌發3.1個腋芽,為所有處理中最少 ,但腋芽乾重亦為所有處理中最重,為0.04 g。腋芽在後續可能會發育成為花苞或是高芽。在200 ppm氮肥處理下,春石斛有最少的花朵數但有最多的高芽數,分別為2.4朵和2.1個。在10 ppm氮肥處理下,春石斛開花節位比例最高,有3.1-3.4節,且花朵數有7.6朵,為各處理間最多。此外,相對於其他處理有較早開花之趨勢,顯示在低溫催花前給予春石斛2個月10 ppm的氮肥處理,能使其在後續花序發育有較佳的開花品質。 出瓶後2個月至7個月之紫色小花蝴蝶蘭 (Phalaenopsis Sogo Lotte ‘F2510’) 於人工氣候室經25/20℃涼溫催花後,出瓶後2個月之小苗抽梗率僅42%,顯示在此階段之小苗尚未完全脫離幼年性。在碳氮分析方面,出瓶後2個月之小苗第二片葉氮濃度為1.94%,且碳氮比為21.7,與出瓶後3個月至5個月之小苗相比,出瓶後2個月之小苗第二片葉氮濃度較高,且碳氮比較低。在開花方面,出瓶後2個月之小苗經低溫催花50 .2天後抽梗,抽梗天數在所有苗齡中最長;而出瓶後2個月之小苗花朵數僅4.6朵,為所有苗齡中最少。 白色大花蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 植體碳氮比與抽梗日數、第一朵花苞可見日數、第一朵花開日數和90%花開日數沒有關係,然植體碳氮比和花序長度 (r = 0.40**)、花梗直徑(r = 0.36*)、第一朵花徑 (r = 0.45*) 和花朵數 (r = 0.41**) 呈正相關,顯示蝴蝶蘭植體碳氮比有做為開花品質指標之潛力。 | zh_TW |
dc.description.abstract | Phalaenopsis is the major flower crop for export in Taiwan. Nobile-type dendrobium, which has various flower shapes and colors, is regarded as a potential flower crop for the international market. The ratio of C and N concentration in plant tissue is called C/N ratio. High C/N ratio is considered to promote reproductive growth and low C/N may boost vegetative growth or even inhibit flowering. However, literatures on how C/N ratio affects the flowering of orchids are limited. In this research, nobile-type dendrobium (Dendrobium spp.) and phalaenopsis (Phalaenopsis spp.) were used to investigate the changes in carbon (C) and nitrogen (N) of tissues during various development stages. The effect of carbon and nitrogen ratio (C/N) on flowering of nobile-type dendrobium and phalaenopsis was also studied.
The hybrid dendrobium (Den. Lai’s Yukisakura) had the minimum C concentration of 46.2% at flower bud visible stage, but there was no significant difference of C concentration among other stages (47.1%-47.7%). The N concentration decreased from 1.03% to 0.88% during forcing then went up to 1.13% at flower bud visible stage. The C/N ratio, which was affected by the N concentration, increased from 47.2 to 54.6 during forcing and went down to 41.6 at flower bud visible stage. Nobile-type dendrobium mainly accumulated sucrose and starch during forcing for subsequent inflorescence development. The second experiment was to analysis leaf C and N concentrations of easy-flowering nobile-type dendrobium cultivars (Den. Snow Princess × Den. Lucky Angel) and not-easy-to-flower nobile-type dendrobium cultivars (Den. Oriental Smile × Den. Stardust ‘FireBird’). Based on the length of plant height, plants of each two nobile-type dendrobium cultivars was divided into four grades. Leaf C/N ratio of easy-flowering nobile-type dendrobium cultivars is higher than not-easy-to-flower nobile-type dendrobium cultivar. Leaf C/N ratio of not-easy-to-flower nobile-type dendrobium cultivar decreased as the grade decreased. No correlation between the leaf C/N ratio and days to axillary buds visible in easy-flowering nobile-type dendrobium cultivar was found. However, there was a negative correlation between the leaf C/N ratio and days to axillary buds visible (r = - 0.64**) in not-easy-to -flower nobile-type dendrobium cultivar. In addition, there was a positive correlation of the C/N ratio with number of axillary buds and number of flowers in both cultivars. The higher leaf C/N ratio, the greater number of axillary buds and flowers existed in the plant. These results indicate that the leaf C/N ratio can be used as an indicator for the number of axillary buds and the number of flowers in nobile-type dendrobium, and low leaf C/N ratio may lead to the decrease in flower quality. The third experiment was giving nobile-type dendrobium two months of short-term nitrogen fertilizer treatment before forcing, with nitrogen fertilizer concentration of 0, 10, 100, or 200 ppm. From the start of fertilization to the time of flower opening, N concentration of plants increased as nitrogen fertilizer concentration increased. The C/N ratio, which was affected by the N concentration, decreased as nitrogen fertilizer concentration increased. The dendrobium which were treated with 200 ppm nitrogen fertilizer had the lowest number but the heaviest dry weight of axillary buds, which were 3.1 and 0.04 g, respectively. Axillary buds may later develop into flower buds or keikis. Besides, nobile-type dendrobium had the least number of flowers (2.4) but the most number of keikis (2.1) after treated with 200 ppm nitrogen fertilizer. Nobile-type dendrobium under 10 ppm nitrogen treatment had the most number of node bearing inflorescence (3.1-3.4) and flowers (7.6), and flowered earlier than other treatments. To sum up, giving nobile-type dendrobium two months of 10 ppm nitrogen fertilizer treatment before forcing can make better flowering quality of nobile-type dendrobium. Small, purple-flowerd phalaenopsis (Phal. Sogo Lotte ‘F2510’) with different plant maturity were placed in phytotron at controlled day/night temperature of 25/20℃ for cool-temperature forcing. The flower-stalk emergence rate of 2 months after deflasking plants was only 42%, which indicates that the plants were not completely out of the juvenile phase. Two months after deflasking, plants had higher N concentration (1.94%), lower C/N ratio (21.7), the longest days to spiking (50.2), and minimum number of flowers (4.6) compared with plants deflasked for 3 to 5 months. No correlation of the C/N ratio with days to spiking, days to first visible bud, days to first flower open and days to 90% flower open in large, white-flowered phalaenopsis (Phal. Sogo Yukidian ‘V3’) was discovered. However, there was a positive correlation between the C/N ratio and inflorescence length (r = 0.40**), flower-stalk diameter (r = 0.36*), first flower diameter (r = 0.45*) and number of flowers (r = 0.41**). Thus, the C/N ratio has the potential for becoming flowering quality index in phalaenopsis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:35Z (GMT). No. of bitstreams: 1 ntu-107-R05628118-1.pdf: 9842951 bytes, checksum: 46dc64699f8695421d9f67a4e07153ed (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 (Acknowledgement) i
摘要 (Abstract) ii Abstract iv 目錄 (Contents) vii 表目錄 (List of tables) ix 圖目錄 (List of figures) xii 壹、前言 (Introduction) 1 貳、前人研究(Literature review) 2 一、碳氮比的意義 2 二、碳氮比在園藝上的應用 3 (一) 、自然生育週期之碳氮變化 3 (二)、碳氮比對於作物開花之影響 4 三、蘭科植物的假球莖及其與生長發育之關係 5 (一) 、假球莖的型態與構造 5 (二) 、假球莖與養分儲藏之關係 5 (三) 、假球莖與植株營養生長之關係 6 (四) 、假球莖與植株生殖生長之關係 6 四、植物常見的碳水化合物種類、特性與分析方法 7 五、蘭科植物開花與碳水化合物之關係 8 參、材料與方法 (Materials and Methods) 10 一、 試驗設計 10 (一) 、春石斛低溫催花前後植體碳氮和碳水化合物濃度變化 10 (二) 、春石斛植體碳氮比與植株成熟度之關聯性 11 (三) 、催花前短期氮肥管理對春石斛植體碳氮比和開花表現之影響 12 (四) 、蝴蝶蘭幼年性與植體碳氮比之相關性 14 (五) 、蝴蝶蘭開花品質與植體碳氮比之相關性 15 二、 碳氮分析 16 三、 碳水化合物分析 17 四、 統計分析 21 肆、結果 (Results) 22 (一) 、春石斛低溫催花後植體碳氮和碳水化合物濃度變化 22 (二) 、春石斛植體碳氮比與植株成熟度之關聯性 30 (三) 、催花前短期氮肥管理對春石斛植體碳氮比和開花表現之影響 31 (四) 、蝴蝶蘭幼年性與植體碳氮比之相關性 36 (五) 、蝴蝶蘭開花品質與植體碳氮比之相關性 38 伍、討論 (Discussion) 41 (一) 、春石斛於生殖生長階段之碳氮變化 41 (二) 、春石斛於生殖生長階段之碳水化合物變化 43 (三) 、春石斛植體碳氮比與植株成熟度之關聯性 49 (四) 、催花前短期氮肥管理對春石斛植體碳氮比和開花表現之影響 51 (五) 、蝴蝶蘭幼年性與植體碳氮比之相關性 52 (六) 、蝴蝶蘭開花品質與植體碳氮比之相關性 55 陸、參考文獻 (References) 58 柒、表 (Tables) 63 捌、圖 (Figures) 114 玖、附錄 (Appendix) 139 | |
dc.language.iso | zh-TW | |
dc.title | 碳氮對春石斛及蝴蝶蘭開花之影響 | zh_TW |
dc.title | Effects of Carbon and Nitrogen on the Flowering of Dendrobium and Phalaenopsis | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王恆隆,林慧玲 | |
dc.subject.keyword | 春石斛,蝴蝶蘭,碳氮比,開花,碳水化合物, | zh_TW |
dc.subject.keyword | Dendrobium,Phalaenopsis,C/N ratio,flowering,carbohydrate, | en |
dc.relation.page | 141 | |
dc.identifier.doi | 10.6342/NTU201803352 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 9.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。