Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷
dc.contributor.authorI-Shun Wangen
dc.contributor.author王義舜zh_TW
dc.date.accessioned2021-06-17T04:26:04Z-
dc.date.available2019-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationReferences
[1] B. T. Teoh et al., 'Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification,' Journal of Clinical Microbiology, Article vol. 53, no. 3, pp. 830-837, 2015.
[2] I. F. Walker et al., 'The Economic Costs of Cardiovascular Disease, Diabetes Mellitus, and Associated Complications in South Asia: A Systematic Review,' Value in Health Regional Issues, Review vol. 15, pp. 12-26, 2018.
[3] P. A. Heidenreich et al., 'Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association,' Circulation, Article vol. 123, no. 8, pp. 933-944, 2011.
[4] WHO. (2018). Density of physicians (total number per 1000 population, latest available year). Available: http://www.who.int/gho/health_workforce/physicians_density/en/
[5] K. L. Elizabeth and Lee Lewandrowski, 'Implementing point-of-care testing to improve outcomes ' Journal of Hospital Administration, vol. 2, no. 2, pp. 125-132, 2013.
[6] A. Dohr, et al., 'The internet of things for ambient assisted living,' in ITNG2010 - 7th International Conference on Information Technology: New Generations, 2010, pp. 804-809.
[7] R. H. Birkhahn, et al., 'Estimating the clinical impact of bringing a multimarker cardiac panel to the bedside in the ED,' American Journal of Emergency Medicine, Article vol. 29, no. 3, pp. 304-308, 2011.
[8] A. I. Khan, et al., 'The variability of results between point-of-care testing glucose meters and the central laboratory analyzer,' Archives of Pathology and Laboratory Medicine, Article vol. 130, no. 10, pp. 1527-1532, 2006.
[9] L. M. Lopez and J. R. Taylor, 'Home Blood Pressure Monitoring: Point-of-Care Testing,' Annals of Pharmacotherapy, Review vol. 38, no. 5, pp. 868-873, 2004.
[10] J. Bay. (2018). Point-of-Care Testing (POCT) Market By Product Type (Glucose Monitoring, Cardiac Markers, Infectious Diseases Testing, Cholesterol Testing, Coagulation Monitoring, Pregnancy And Fertility Testing, Hematology Testing, Blood Gas Testing); By End-User Type (Clinics, Home, Laboratories, Assisted living healthcare facilities, Hospitals) and by regional analysis - global forecast by 2016 - 2022. Available: https://www.marketresearchengine.com/point-of-care-testing-market
[11] G. RESEARCH. (2018). Global Point Of Care Testing (POCT) Devices Market Outlook 2024: Global Opportunity And Demand Analysis, Market Forecast, 2016-2024. Available: https://www.goldsteinresearch.com/report/global-point-of-care-testing-poct-devices-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024
[12] B. WIRE, 'Global Point-of-Care Testing Market Analysis and Forecast 2017-2026 ' 2018.
[13] A. i-STAT. (2018). Available: https://www.pointofcare.abbott/int/en/offerings/istat/istat-handheld
[14] Quidel. (2018). Available: http://www.quidel.com/immunoassays/triage-test-kits/triage-meterpro
[15] Cobas. (2018). Available: http://www.cobas.com/home/product/point-of-care-testing/cobas-h-232.html
[16] WHO. (2018). Noncommunicable diseases. Available: http://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
[17] E. Engvall and P. Perlmann, 'Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,' Immunochemistry, vol. 8, no. 9, pp. 871-874, 1971.
[18] C. Ramakers, et al., 'Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data,' Neuroscience Letters, vol. 339, no. 1, pp. 62-66, 2003.
[19] H. Chen, et al., 'Protein chips and nanomaterials for application in tumor marker immunoassays,' Biosensors and Bioelectronics, Review vol. 24, no. 12, pp. 3399-3411, 2009.
[20] P. De-Los-Santos-Álvarez, et al., 'Current strategies for electrochemical detection of DNA with solid electrodes,' Analytical and Bioanalytical Chemistry, Review vol. 378, no. 1, pp. 104-118, 2004.
[21] A. J. Qavi, et al., 'Label-free technologies for quantitative multiparameter biological analysis,' Analytical and Bioanalytical Chemistry, Review vol. 394, no. 1, pp. 121-135, 2009.
[22] K. I. Chen, et al., 'Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,' Nano Today, Review vol. 6, no. 2, pp. 131-154, 2011.
[23] F. N. Ishikawa et al., 'A calibration method for nanowire biosensors to suppress device-to-device variation,' ACS Nano, Article vol. 3, no. 12, pp. 3969-3976, 2009.
[24] A. Vacic and M. A. Reed, 'Biomolecular field effect sensors (Biofets): From qualitative sensing to multiplexing, calibration and quantitative detection from whole blood,' International Journal of High Speed Electronics and Systems, Conference Paper vol. 21, no. 1, 2012, Art. no. 1250004.
[25] J. Wang, 'Glucose biosensors: 40 Years of advances and challenges,' Electroanalysis, Review vol. 13, no. 12, pp. 983-988, 2001.
[26] G. Reach and G. S. Wilson, 'Can continuous glucose monitoring be used for the treatment of diabetes,' Analytical Chemistry, Article vol. 64, no. 6, pp. 381A-386A, 1992.
[27] A. P. F. Turner, et al., 'In vitro diagnostics in diabetes: Meeting the challenge,' Clinical Chemistry, Conference Paper vol. 45, no. 9, pp. 1596-1601, 1999.
[28] R. M. Lequin, 'Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA),' Clinical Chemistry, 10.1373/clinchem.2005.051532 vol. 51, no. 12, p. 2415, 2005.
[29] I. McDaniel. (2016). ELISA Enzyme Linked Immunosorbent Assay. What is an ELISA? Enzyme-linked immunosorbent assay Name suggests three components –Antibody Allows for specific. Available: http://slideplayer.com/slide/7579357/
[30] G. Wu, et al., 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nature Biotechnology, Article vol. 19, no. 9, pp. 856-860, 2001.
[31] D. R. Shankaran, et al., 'Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,' Sensors and Actuators, B: Chemical, Article vol. 121, no. 1, pp. 158-177, 2007.
[32] C. W. Huang et al., 'A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,' Lab on a Chip, Article vol. 13, no. 22, pp. 4451-4459, 2013.
[33] D. H. Kuan et al., 'A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,' Lab on a Chip, Article vol. 16, no. 16, pp. 3105-3113, 2016.
[34] P. Bergveld, 'Short Communications: Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements,' IEEE Transactions on Biomedical Engineering, Article vol. BME-17, no. 1, pp. 70-71, 1970.
[35] J. van der spiegel, et al., 'The extended gate chemically sensitive field effect transistor as multi-species microprobe,' Sensors and Actuators, vol. 4, pp. 291-298, 1983/01/01/ 1983.
[36] L. L. Chi, et al., 'Study on extended gate field effect transistor with tin oxide sensing membrane,' Materials Chemistry and Physics, Article vol. 63, no. 1, pp. 19-23, 2000.
[37] C. E. Lue et al., 'PH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process,' Microelectronics Reliability, Article vol. 52, no. 8, pp. 1651-1654, 2012.
[38] M. Beyer et al., 'Development and application of a new enzyme sensor type based on the EIS-capacitance structure for bioprocess control,' Biosensors and Bioelectronics, Article vol. 9, no. 1, pp. 17-21, 1994.
[39] D. G. Hafeman, et al., 'Light-addressable potentiometric sensor for biochemical systems,' Science, Article vol. 240, no. 4856, pp. 1182-1185, 1988.
[40] L. Torsi, et al., 'Multi-parameter gas sensors based on organic thin-film-transistors,' Sensors and Actuators, B: Chemical, Article vol. 67, no. 3, pp. 312-316, 2000.
[41] Y. Cui and C. M. Lieber, 'Functional nanoscale electronic devices assembled using silicon nanowire building blocks,' Science, Article vol. 291, no. 5505, pp. 851-853, 2001.
[42] S. Rigante et al., 'FinFET integrated low-power circuits for enhanced sensing applications,' Sensors and Actuators, B: Chemical, Article vol. 186, pp. 789-795, 2013.
[43] A. Poghossian and M. J. Schöning, 'Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications,' Electroanalysis, Article vol. 26, no. 6, pp. 1197-1213, 2014.
[44] J. Justin Gooding, 'Nanoscale biosensors: Significant advantages over larger devices?,' Small, Article vol. 2, no. 3, pp. 313-315, 2006.
[45] F. Patolsky, et al., 'Nanowire sensors for medicine and the life sciences,' Nanomedicine, Review vol. 1, no. 1, pp. 51-65, 2006.
[46] W. Lu and C. M. Lieber, 'Semiconductor nanowires,' Journal of Physics D: Applied Physics, Review vol. 39, no. 21, pp. R387-R406, 2006, Art. no. R01.
[47] M. Meyyappan and J. S. Lee, 'Nanowire BioFETs: An overview,' in Nanowire Field Effect Transistors: Principles and Applications, vol. 9781461481249, 2013, pp. 225-240.
[48] F. Patolsky and C. M. Lieber, 'Nanowire nanosensors,' Materials Today, Review vol. 8, no. 4, pp. 20-28, 2005.
[49] E. Stern, et al., 'Importance of the debye screening length on nanowire field effect transistor sensors,' Nano Letters, Article vol. 7, no. 11, pp. 3405-3409, 2007.
[50] X. Ma, et al., 'Interleukin-6 gene cloning, expression and purification,' Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae, Article vol. 20, no. 3, pp. 185-190, 1998.
[51] E. Peronnet, et al., 'Isoelectric point determination of cardiac troponin I forms present in plasma from patients with myocardial infarction,' Clinica Chimica Acta, Article vol. 377, no. 1-2, pp. 243-247, 2007.
[52] MyBioSource. (2018). N-Terminal Pro-Brain Natriuretic Peptide (NT-ProBNP) Recombinant Protein. Available: https://www.mybiosource.com/prods/Recombinant-Protein/N-Terminal-Pro-Brain-Natriuretic-Peptide-NT-ProBNP/NT-ProBNP/datasheet.php?products_id=2090441
[53] J. A. Koepke, et al., 'Identification of human hemoglobins by use of isoelectric focusing in gel,' Clinical Chemistry, Article vol. 21, no. 13, pp. 1953-1955, 1975.
[54] D. Koval, et al., 'Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing,' Analytical Biochemistry, Article vol. 413, no. 1, pp. 8-15, 2011.
[55] P. R. Nair and M. A. Alam, 'Design considerations of silicon nanowire biosensors,' IEEE Transactions on Electron Devices, Article vol. 54, no. 12, pp. 3400-3408, 2007.
[56] J. Li, Y. Zhang, et al., 'Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,' ACS Nano, Article vol. 5, no. 8, pp. 6661-6668, 2011.
[57] T. Properties, et al., 'Silicon Nanowires: Preparation, Device Fabrication, and,' Journal of Physical Chemistry B, Article vol. 104, no. 50, pp. 11864-11870, 2000.
[58] W. Kester, Practical design techniques for sensor signal conditioning. PRENTICE HALL, 1999.
[59] S. H. Shen, et al., 'An enhancement of high-k/oxide stacked dielectric structure for silicon-based multi-nanowire biosensor in cardiac troponin i detection,' Sensors and Actuators, B: Chemical, Article vol. 218, pp. 303-309, 2015.
[60] T. F. Lu, et al., 'Effects of thickness effect and rapid thermal annealing on pH sensing characteristics of thin HfO2 films formed by atomic layer deposition,' Japanese Journal of Applied Physics, Article vol. 50, no. 10 PART 2, 2011.
[61] L. C. Yen, et al., 'Effect of sensing film thickness on sensing characteristics of dual-gate poly-si ion-sensitive field-effect-transistors,' IEEE Electron Device Letters, Article vol. 35, no. 12, pp. 1302-1304, 2014, Art. no. 6954697.
[62] N. D. H. B. Abd Patah and S. H. B. Herman, 'Film thickness dependence of glucose response for spin-coated zinc oxide-based non-enzymatic glucose sensor,' in 2nd International Symposium on Technology Management and Emerging Technologies, ISTMET 2015 - Proceeding, 2015, pp. 1-5.
[63] E. Stem et al., 'A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions,' Small, Article vol. 6, no. 2, pp. 232-238, 2010.
[64] G. Christodoulidis, et al., 'Inflammation in coronary artery disease,' Cardiology in Review, Review vol. 22, no. 6, pp. 279-288, 2014.
[65] B. Mitra and M. Panja, 'High sensitive C - Reactive protein: A novel biochemical markers and its role in coronary artery disease,' Journal of Association of Physicians of India, Review vol. 53, no. JAN, pp. 25-32, 2005.
[66] E. Zakynthinos and N. Pappa, 'Inflammatory biomarkers in coronary artery disease,' Journal of Cardiology, Review vol. 53, no. 3, pp. 317-333, 2009.
[67] T. Guo et al., 'The clinical value of inflammatory biomarkers in coronary artery disease: PTX3 as a new inflammatory marker,' Experimental Gerontology, Article vol. 97, pp. 64-67, 2017.
[68] R. Sukhija et al., 'Inflammatory Markers, Angiographic Severity of Coronary Artery Disease, and Patient Outcome,' American Journal of Cardiology, Article vol. 99, no. 7, pp. 879-884, 2007.
[69] M. V. Wainstein et al., 'Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography,' Diabetology and Metabolic Syndrome, Article vol. 9, no. 1, 2017, Art. no. 67.
[70] L. Mao, et al., 'Interleukin-6 (IL-6) -174G/C genomic polymorphism contribution to the risk of coronary artery disease in a Chinese population,' Genetics and Molecular Research, Article vol. 15, no. 2, 2016, Art. no. gmr.15027803.
[71] M. Roffi et al., '2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation: Task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the european society of cardiology (ESC),' European Heart Journal, Review vol. 37, no. 3, pp. 267-315, 2016.
[72] G. N. Levine et al., '2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients with Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,' Circulation, Article vol. 134, no. 10, pp. e123-e155, 2016.
[73] P. M. McKie and J. C. Burnett, Jr., 'NT-proBNP: The Gold Standard Biomarker in Heart Failure,' Journal of the American College of Cardiology, Editorial vol. 68, no. 22, pp. 2437-2439, 2016.
[74] N. van der Burg-de Graauw, et al., 'The additive value of N-terminal pro-B-type natriuretic peptide testing at the emergency department in patients with acute dyspnoea,' European Journal of Internal Medicine, Article vol. 20, no. 3, pp. 301-306, 2009.
[75] S. Cho et al., 'The additive value of multiple biomarkers in prediction of premature coronary artery disease,' Acta Cardiologica, Article vol. 70, no. 2, pp. 205-210, 2015.
[76] C. Duarte-Guevara, et al., 'On-chip electrical detection of parallel loop-mediated isothermal amplification with DG-BioFETs for the detection of foodborne bacterial pathogens,' RSC Advances, Article vol. 6, no. 106, pp. 103872-103887, 2016.
[77] J. F. Masson, et al., 'Quantitative measurement of cardiac markers in undiluted serum,' Analytical Chemistry, Article vol. 79, no. 2, pp. 612-619, 2007.
[78] Q. Wu et al., 'Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I,' Biosensors and Bioelectronics, Article vol. 96, pp. 288-293, 2017.
[79] L. E. Agafonova, et al., 'Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples,' Chemical Physics Letters, Article vol. 604, pp. 5-9, 2014.
[80] M. M. Billah, et al., 'Mixed self-assembled monolayer (mSAM) based impedimetric immunosensors for cardiac troponin i (cTnI) and soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1),' Sensors and Actuators, B: Chemical, Article vol. 173, pp. 361-366, 2012.
[81] R. Akter, et al., 'Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor,' Biosensors and Bioelectronics, Article vol. 91, pp. 637-643, 2017.
[82] S. Hideshima, et al., 'Fabrication of stable antibody-modified field effect transistors using electrical activation of Schiff base cross-linkages for tumor marker detection,' Biosensors and Bioelectronics, Article vol. 26, no. 5, pp. 2419-2425, 2011.
[83] C. Retna Raj and T. Ohsaka, 'Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol,' Journal of Electroanalytical Chemistry, vol. 540, pp. 69-77, 1/2/ 2003.
[84] A. Khan et al., 'A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection,' Talanta, vol. 84, no. 3, pp. 789-801, 5/15/ 2011.
[85] A. American Diabetes, 'Diagnosis and classification of diabetes mellitus,' Diabetes Care, vol. 37 Suppl 1, no. Supplement 1, pp. S81-90, Jan 2014.
[86] I. Goodall, 'HbA(1c) Standardisation Destination – Global IFCC Standardisation How, Why, Where and When: A Tortuous Pathway From Kit Manufacturers, via Inter-laboratory Lyophilized and Whole Blood Comparisons to Designated National Comparison Schemes,' Clinical Biochemist Reviews, vol. 26, no. 1, pp. 5-19, 2005.
[87] R. J. Koenig, et al., 'Hemoglobin AIc as an indicator of the degree of glucose intolerance in diabetes,' Diabetes, vol. 25, no. 3, pp. 230-232, March 1, 1976 1976.
[88] D. B. Sacks, et al., 'Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,' Clin Chem, vol. 48, no. 3, pp. 436-72, Mar 2002.
[89] C. International Expert, 'International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes,' Diabetes Care, vol. 32, no. 7, pp. 1327-34, Jul 2009.
[90] C. Bian, et al., 'A field effect transistor (FET)-based immunosensor for detection of HbA1c and Hb,' Biomedical Microdevices, Article vol. 13, no. 2, pp. 345-352, 2011.
[91] I. Committee, 'International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes,' Diabetes care, 2009.
[92] P. M. Ridker, et al., 'Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men,' Circulation, Article vol. 101, no. 15, pp. 1767-1772, 2000.
[93] C. K. Wu et al., 'Plasma levels of tumor necrosis factor-α and interleukin-6 are associated with diastolic heart failure through downregulation of sarcoplasmic reticulum Ca2+ ATPase,' Critical Care Medicine, Conference Paper vol. 39, no. 5, pp. 984-992, 2011.
[94] C. Y. Lin et al., 'Prognostic significance of left ventricular diastolic function in burn patients,' Shock, Article vol. 37, no. 5, pp. 457-462, 2012.
[95] K. Thygesen et al., 'Third universal definition of myocardial infarction,' European Heart Journal, Article vol. 33, no. 20, pp. 2551-2567, 2012.
[96] D. A. Morrow et al., 'National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes,' Clinical Chemistry, Review vol. 53, no. 4, pp. 552-574, 2007.
[97] A. Maisel et al., 'State of the art: Using natriuretic peptide levels in clinical practice,' European Journal of Heart Failure, Review vol. 10, no. 9, pp. 824-839, 2008.
[98] C. A. Marquette, et al., 'Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate,' Biosensors and Bioelectronics, vol. 19, no. 5, pp. 433-439, 12/30/ 2003.
[99] H. C. Chen et al., 'Magnetic-Composite-Modified Polycrystalline Silicon Nanowire Field-Effect Transistor for Vascular Endothelial Growth Factor Detection and Cancer Diagnosis,' (in English), Analytical Chemistry, Article vol. 86, no. 19, pp. 9443-9450, 2014.
[100] C. J. Chu et al., 'Improving nanowire sensing capability by electrical field alignment of surface probing molecules,' Nano Letters, Article vol. 13, no. 6, pp. 2564-2569, 2013.
[101] T. I. Yin et al., 'A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin i immunoassay,' Lab on a Chip - Miniaturisation for Chemistry and Biology, Article vol. 13, no. 5, pp. 834-842, 2013.
[102] T. Kong, et al., 'CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis,' Biosensors and Bioelectronics, Article vol. 34, no. 1, pp. 267-272, 2012.
[103] K. Kim et al., 'Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity,' Biosensors and Bioelectronics, Article vol. 77, pp. 695-701, 2016.
[104] I. Sarangadharan et al., 'Single Drop Whole Blood Diagnostics: Portable Biomedical Sensor for Cardiac Troponin i Detection,' Analytical Chemistry, Article vol. 90, no. 4, pp. 2867-2874, 2018.
[105] Y. Kutovyi et al., 'Origin of noise in liquid-gated Si nanowire troponin biosensors,' Nanotechnology, Article vol. 29, no. 17, Art. no. 175202, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70335-
dc.description.abstract隨著人口爆炸性的成長,各種疾病正威脅著人類的生命和財產,如登革熱、糖尿病與心血管疾病等。而為了充分地利用有限醫療之資源,有效率地做出醫療分級與對於病情做出最有效之監控與快速篩檢,個人醫療診斷平台與定點照護檢測之開發受到相當程度之重視。藉由成熟的半導體技術產業,發展CMOS個人醫療體外定點照護診斷系統為近來主要研究發展之方向。
本論文利用台積電 0.35 μm 製程製作感測晶片。除了可針對急性心肌梗塞,檢測心臟衰竭指標蛋白和介白素6之心血管疾病之生物標的物做檢測,而在緩衝溶液中此晶片在介白素6 (IL-6)、心肌鈣蛋白(cTnI)和N端前腦利鈉肽(NT-proBNP)的檢測限分別確定為45 pM,32 pM和32 pM。此外,在臨床血清的量測下,開發的CMOS生物傳感器與從醫院中央實驗室獲得的酶聯免疫吸附測定(ELISA)具有良好的相關性。我們還在臨床血液樣本檢測中量測了血紅蛋白(Hb)和糖化血紅蛋白(HbA1c)。在日常血糖水平波動的情況下,HbA1c檢查是長期糖尿病監測中更好的方法。目前,HbA1c測試需要在實驗室或醫院進行,因為操作複雜,需要訓練有素的操作人員。這限制了它在家庭護理應用和資源有限的領域的應用。將感測結果與標準Hb和HbA1c測量方法進行比較並顯示可比較的結果。
最後,我們提出新型後端蝕刻設計以有效地減少晶片之間的誤差值,並良好控制奈米線上方氧化介電層的厚度。並用心肌鈣蛋白去驗證新型後端蝕刻設計,能有效降低量測變異率,提升感測器之可靠度,搭配半導體製程之技術可以很容易地與不同的功能模組做整合,例如無線網路和微流道系統。因此,本研究驗證了一個基於商用CMOS製程技術的生物傳感器平台的良好潛力,將可滿足對早期診斷和即時檢測系統(POCT)的需求。
zh_TW
dc.description.abstractAging problems have become life threatens in modern societies. For instance, people are suffered from different kinds of aging diseases, such as cardiovascular diseases and diabetes. To effectively diagnose these diseases, in general, biomolecular marker analysis is one of the most important methods. However, traditional biomolecular analysis methods are human-intensive and time-consuming. To address these problems, in this work, a CMOS-based field-effect biomolecular sensing technology is developed and evaluated. The CMOS biosensor is implemented via a standard commercialized 0.35 μm CMOS process. Therefore, the developed technology has potentials for further translation into applications.
The developed CMOS-based field-effect biomolecular sensing technology is aiming at two diseases, i.e. cardiac biomarkers (cardiac-specific troponin-I (cTnI), N-terminal prohormone brain natriuretic peptide (NT-proBNP), and interleukin-6 (IL-6)) and diabetes biomarkers (hemoglobin (Hb) and glycated hemoglobin (HbA1c)). To validate the developed technology, clinical sample were used and enzyme-linked immuno-sorbent assay (ELISA) was employed to examine the output of the proposed semiconductor sensors. To improve the sensitivity and uniformity of the developed technologies, furthermore, a lift-off post-end fabrication process was also proposed for 0.35 μm 2P4M commercially-available CMOS biosensor. To examine the proposed post-process, pH tests and cTnI measurements were utilized. As a consequence, the developed devices can be easily integrated into available electrical modules, such as wireless and microfluidic systems. And this work presents a CMOS based biosensor platform to accomplish the need of early diagnosis and point-of-care testing (POCT) system.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:26:04Z (GMT). No. of bitstreams: 1
ntu-107-D03943018-1.pdf: 4037035 bytes, checksum: 1905043dfdfac8605e8abc0dd4969829 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContent
口試委員會審定書
誌謝 I
摘要 II
Abstract IV
Content VI
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Introduction of Point-of-Care Testing 1
1.2 Motivation 4
1.3 The Organization of This Dissertation 8
Chapter 2 Literatures Review and Theory 10
2.1 Introduction of Biosensor 10
2.2 Sensing Mechanism of Bio-FET Sensor 19
2.3 Silicon-Based Nanowire FET Bio-Sensor 23
2.4 Sensing Mechanism and Parameters of Nanowire FET Sensor 28
Chapter 3 Experimental Methods and Design Concept 33
3.1 Materials 33
3.2 Design and Fabrication Process of Sensing Chips 37
3.3 Lift-Off Fabrication Process 42
3.4 Immobilization Process and Measurement Steps 49
Chapter 4 Results and Discussion 53
4.1 pH sensing Characteristic 53
4.2 Cardiovascular Disease Related Biomarkers 55
4.3 Diabetes Related Biomarkers 67
4.4 Discussion 75
4.5 Sensors Performance by Using Lift-Off Process 83
4.5.1 pH Sensing Characteristic 86
4.5.2 Biomolecule Detection 87
Chapter 5 Conclusion and Prospects 91
5.1 Conclusion 91
5.2 Prospects 93
References 95
dc.language.isoen
dc.title互補式金屬氧化物半導體生物感測晶片於定點照護檢測應用之研究zh_TW
dc.titleA Study of CMOS Biosensor Chip in Point of Care Testing Applicationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee林彥宏,楊家銘,陳建甫,林淑萍,黃念祖
dc.subject.keywordCMOS多晶矽奈米線,生物分子感測元件,心血管疾病,糖尿病,可靠度,POCT,zh_TW
dc.subject.keywordCMOS poly-silicon nanowire,biosensor,cardiovascular diseases,diabetes,reliability,POCT,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201802134
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved