Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70333
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙(Hsiu-Hsi Chen)
dc.contributor.authorSheng-Lin Wangen
dc.contributor.author王聖麟zh_TW
dc.date.accessioned2021-06-17T04:26:01Z-
dc.date.available2018-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationReferences:
Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109: 1721-1728.
Beckmann KR, Lynch JW, Hiller JE, Farshid G, Houssami N et al (2015a) A novel case-control design to estimate the extent of over-diagnosis of breast cancer due to organized population-based mammography screening. Int. J. Cancer 136: 1411-1421.
Beckmann K, Duffy SW, Lynch J, Hiller J, Farshid G et al (2015b) Estimates of over-diagnosis of breast cancer due to population-based mammography screening in South-Australia after adjustment for lead time effect. J Med Screen 22(3): 127-135.
Biesheuvel C, Barratt A, Howard K, Houssami N, Irwig L (2007) Effects of study methods and biases on estimates of invasive breast cancer overdetection with mammography screening: a systematic review. Lancet Oncol 8: 1129-1138.
Bohning D (1998) Zero-inflated Poisson models and C. A. MAN.: A tutorial collection of evidence. Biometrical Journal 40: 833-843.
Bohning D, Dietz E, Schlattmann P (1999) The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. J. R. Statist. Soc. A 162: 195-209.
Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14: 1368-1376.
Chen HH, Duffy SW, Tabar L (1997) A mover-stayer mixture of Markov chain models for the assessment of dedifferentiation and tumour progression in breast cancer. Journal of Applied Statistics 24: 265-278.
Chuang, S. L., Chen, S. L. S., Yu, C. P., Chang, K. J., Yen, A. M. F., Chiu, S. Y. H., ... & Chen, H. H. (2014). Using tumor phenotype, histological tumor distribution, and mammographic appearance to explain the survival differences between screen‐detected and clinically detected breast cancers. APMIS, 122(8), 699-707.
Coldman A and Phillips N (2013) Incidence of breast cancer and estimates of overdiagnosis after the initiation of a population-based mammography screening program. CMAJ 185(10): E498-E498.
Dong, W., D. A. Berry, T. B. Bevers, S. W. Kau, L. Hsu, R. L. Theriault and Y. Shen (2008). 'Prognostic role of detection method and its relationship with tumor biomarkers in breast cancer: the university of Texas M.D. Anderson Cancer Center experience.' Cancer Epidemiol Biomarkers Prev 17(5): 1096-1103.
Collett, D. (2015). Modelling survival data in medical research. CRC press.
Dressler LG, Berry DA, Broadwater G, Cowan D, Cox K, Griffin S, Miller A, Tse J, Novotny D, Persons DL, Barcos M, Henderson IC, Liu ET, Thor A, Budman D, Muss H, Norton L, Hayes DF (2005) Comparison of HER2 status by fluorescence in situ hybridization and immunohistochemistry to predict benefit from dose escalation of adjuvant doxorubicin-based therapy in node-positive breast cancer patients. J Clin Oncol 23: 4287-4297
Duffy SW, Tabar L, Fagerberg G, Gad A, Grontoft O, South MC, Day NE (1991) Breast screening, prognostic factors and survival-results from the Swedish two county study. Br J Cancer 64: 1133-1138.
Duffy SW, Agbaje O, Tabar L, Vitak B, Bjurstam N et al (2005) Estimates of overdiagnosis from two trials of mammographic screening for breast cancer. Breast Cancer Res 7(6): 258-265.
Dwivedi AK, Dwivedi SN, Deo S, Shukla R, Kopras W (2010) Statistical models for predicting number of involved nodes in breast cancer patients. Health (Irvine Calif) 2: 641-651.
Early Breast Cancer Trialists’ Collaborative Group (1992) Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. Lancet 339: 1-15, 71-85.
Etzioni R, Gulati R, Mallinger L, and Mandelblatt J (2013) Influence of study features and methods on overdiagnosis estimates in breast and prostate cancer screening. Ann Intern Med 158(11): 831-838.
EUROSCREEN Working Group (2012) Summary of the evidence of breast cancer service screening outcomes in Europe and first estimate of the benefit and harm balance sheet. J Med Screen 19 suppl 1: 5-13.
Fitzgibbons PL, Page DL, Weaver D, et al (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Satement 1999. Arch Pathol Lab Med 24: 966-978.
Hellquist BN, Duffy SW, Nystrom L, Jonsson H (2012) Overdiagnosis in the population-based service screening programme with mammography for women aged 40 to 49 years in Sweden. J Med Screen 19: 14-19.
Independent UK Panel on Breast Cancer Screening (2012) The benefits and harms of breast cancer screening: an independent review. Lancet 380: 1778-1786.
Jonsson H, Johansson R, Lenner P (2005) Increased incidence of invasive breast cancer after the introduction of service screening with mammography in Sweden. Int J Cancer 117: 842-847.
Kalager M, Adami HO, Bretthauer M, Tamimi RM (2012) Overdiagnosis of invasive breast cancer due to mammography screening: results from the Norwegian screening program. Ann Intern Med 156: 491-499.
Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5: 845-856.
Morrel S, Barratt A, Irwig L, Howard K, Biesheuvel C et al (2012) Estimates of overdiagnosis of invasive breast cancer associated with screening mammography. Cancer Causes Control 21: 275-282.
Moss S (2005) Overdiagnosis in randomized controlled trials of breast cancer screening. Breast Cancer Res 7(5): 230-234.
Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, Cirrincione CT, Budman DR, Wood WC, Barcos M, Henderson IC (1994) c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330: 1260-1266.
Norad SA, Valentini A, Nofech-Mozed S, Sun P, Hanna W (2012) Tumour characterisitcs among women with very low-risk breast cancer. Breast Cancer Res Treat 134: 1241-1246. DOI 10.1007/s10549-012-2065-x.
Parise CA and Caggiano V (2014) Breast cancer survival defined by ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. Journal of Cancer Epidemiol 2014: 469251. DOI: 10.1155/2014/469251.
Pekar G, Hofmeyer S, Tabar L, Tarjan M, Chen TH, Yen AM, Chiu SY, Hellberg D, Gere M, Tot T (2013) Multifocal breast cancer documented in large-format histology sections: long-term follow-up results by molecular phenotypes. Cancer 119: 1132-1139.
Pekar G, Gere M, Tarjan M, Hellberg D, Tot T (2014) Molecular phenotype of the foci in multifocal invasive breast carcinomas: intertumoural heterogeneity is related to shorter survival and may influence the choice of therapy. Cancer 120:26-34.
Puliti D, Duffy SW, Miccinesi G, de Koning H, Lynge E et al (2012) Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review. J Med Screen 19 suppl 1: 42-56.
Ripping TM, Verbeek ALM, Fracheboud J, de Koning HJ, van Ravesteyn NT et al (2015) Overdiagnosis by mammographic screening for breast cancer studied in birth cohorts in The Netherlands. Int J Cancer 137: 921-929.
Rutqvist LE, Cedermark B, Glas U, Johansson H, Nordenskjold B, Skoog L, Somell A, Theve T, Friberg S, Askergren J (1987) The Stockholm trial on adjuvant tamoxifen in early breast cancer. Correlation between estrogen receptor level and treatment effect. Breast Cancer Res Treat 10: 255-266.
Ryden S, Ferno M, Borg A, Hafstrom L, Moller T, Norgren A (1988) Prognostic significance of estrogen and progesterone receptors in stage II breast cancer. J Surg Oncol 37: 221-226.
Tabar L, Fagerberg CJ, Gad A, Baldetorp L, Holmberg LH et al (1985) Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet 1: 829-832.
Tabar L, Fagerberg G, Chen HH, Duffy SW, Gad A (1996) Tumour development, histology and grade of breast cancers: prognosis and progression. Int J Cancer 66:413-419.
Tabar L, Chen HH, Duffy SW, Krusemo UB (1999) Primary and adjuvant therapy, prognostic factors and survival in 1053 breast cancers diagnosed in a trial of mammography screening. Jpn J Clin Oncol 29: 608-616.
Tabar L, Chen HH, Duffy SW, Yen MF, Chiang CF, Dean PB, Smith RA (2000) A novel method for prediction of long-term outcome of women with T1a, T1b, and 10-14 mm invasive breast cancers: a prospective study. Lancet 355: 429-433.
Tabar L, Tony Chen HH, Amy Yen MF, Tot T, Tung TH, Chen LS, Chiu YH, Duffy SW, Smith RA (2004) Mammographic tumour features can predict long-term outcomes reliably in women with 1-14-mm invasive breast carcinoma. Cancer 101:1745-59.
Tabár L, Dean PB, Yen AM, Tarján M, Chiu SY, Chen SL, Fann JC, Chen TH (2014) A Proposal to unify the classification of breast and prostate cancers based on theanatomic Site of cancer origin and on long-term patient outcome. Breast Cancer (Auckl) 8:15-38.
Tot T, Pekár G (2011) Multifocality in 'basal-like' breast carcinomas and its influence on lymph node status. Ann Surg Oncol 18:1671-1677.
Tot T, Gere M, Pekár G, Tarján M, Hofmeyer S, Hellberg D, Lindquist D, Chen TH, Yen AM, Chiu SY, Tabár L (2011) Breast cancer multifocality, disease extent, and survival. Hum Pathol 42:1761-1769.
Tot T (2012) Auxillary lymph node status in unifocal, multifocal, and diffuse breast carcinomas: differences are related to macrometastatic disease. Ann Surg Oncol 19:3395-3401.
Walker RA (2008) Immunohistochemical markers as predictive tools for breast cancer. J Clin Pathol 61: 689-696.
Zackrisson S, Ancersson I, Janzon L, Manjer J, Garne JP (2006) Rate of over-diagnosis of breast cancer 15 years after end of Malmo mammographic screening trial: follow-up study. BMJ 332(7543): 689-692.
Zahl PH, Strand BH, Maehlen J (2004) Incidence of breast cancer in Norway and Sweden during introduction of nationwide screening: prospective cohort study. BMJ 328: 921-924.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70333-
dc.description.abstract研究背景:
雖然影響乳癌病程進展之因子在許多研究中已多所著墨,但隨著醫療科技之進展下對於乳癌之治療方法日趨進步以及乳癌早期偵測之影響下,乳癌疾病對於婦女之威脅與影響與過往相較已有相當程度之差異。
研究目的:
本研究旨在運用包含乳房攝影表徵、乳癌病灶分子生物標記,以及乳癌傳統病灶特徵發展對於乳癌病患之危險辨識方法。
材料與方法。
資料來源:
本研究以回溯式研究設計納入1996到2014年間共計2540位於瑞典法倫中央醫院診斷之侵襲性乳癌個案,收集其乳癌傳統病灶特徵、荷爾蒙受器表現等之分子特徵,以及病灶之乳房攝影表現特徵等多種類之乳癌風險預測因子。追蹤至2015年底為止,在此乳癌個案族群中,共計有251位乳癌死亡個案發生。除上述乳癌預後風險因子外,其他如治療方式與乳癌偵測模式之變項亦收集於觀察資料中。
統計方法:
本研究運用包含發生乳癌死亡事件之觀察時間以及治癒模型(cured model)發展預測乳癌存活與治癒比例之方法。本研究首先逐一評估上述乳癌預後之多重因子影響程度。對於乳房攝影表現特徵與乳癌病灶分子表現對於乳癌個案預後之影響,除了不同類別預後因子對於乳癌存活之影響,本研究亦運用多變項分析對於各因子,特別是乳房攝影表現特徵與乳癌病灶分子表現,對乳癌存活造成之影響進行整合性評估。本研究繼而運用多變項增速模型評估對於上述多重預後因子對於乳癌死亡之影響,並以估計結果繪製乳癌存活預測曲線。對於乳癌治癒機率之考量上,本研究運用貝氏治癒模型(Bayesian cured model)在考慮乳癌治癒比例之情形下評估各因子對於乳癌存活之影響並預測30年存活機率以及建構乳癌個案危險分層。
研究結果:
在考慮乳房攝影表徵對於乳癌死亡之影響下,粉狀以及碎石狀之乳房攝影表徵之乳癌死亡風險極低,表示此兩類乳房攝影表徵之過度診斷之可能較高;相對而言,管狀鈣化與結構扭曲之乳房攝影表徵則具有高乳癌死亡風險,須採用更有效與積極之治療方式。
在乳癌病灶分子標記表現對於乳癌死亡風險之影響分析方面,管腔A型與管腔B型之病灶進展以及死亡風險較低,表示具有此兩類分子標記表現之病灶其過度診斷可能較高;若病灶之分子生表現屬於基層型或三陰性表現形態,則其乳癌死亡風險較高,其治療方式亦須以較有效積極之方式為之。
對於治癒率而言,本研究結果顯示在乳癌病患中,在經過初始之療程後,治癒比例為55.7%。對於粉狀乳房攝影表現之病灶,其治癒率最高(66%),其次為圓形乳房攝影表現(治癒率為62%)、碎石狀(58%)以及星狀(56%)。管狀鈣化與結構扭曲之乳房攝影表徵者之治癒率極低(19%)。對於乳癌病灶分子標記表現而言,管腔A型(56%)、管腔B型(46%)以及HER-2(56%)之治癒率皆較高,但基層型(29%)與三陰性(31%)之治癒率皆較低。
結論:
本研究在納入多重乳癌死亡預後因子下建構了乳癌個案危險預測模型。借助於本研究所建構之風險預測模型不僅可辨識乳癌死亡高風險者(管狀鈣化/結構扭曲以及基層型分子標記表現)對其提供密切之臨床介入與監測,亦可辨識乳癌病患中屬於低風險者(粉狀以及碎石型,管腔A型與B型之低度惡性者),以避免對此一低風險族群進行過度之監測與治療。
zh_TW
dc.description.abstractBackground:
Prognosis of breast cancer has been well documented but epidemiological and clinical profiles have been updated due to early detection and the advent of new therapy and treatments guided by new molecular biomarkers and imaging techniques.
Aims:
We aimed to develop a risk prediction model based on a constellation of mammographic appearances, molecular biomarkers, and clinical tumour attributes in order to classify different risk profiles of breast cancer.
Data and Methods
Data Sources:
A retrospective cohort was designed by enrolling 2540 patients diagnosed with invasive breast cancer at Falun Central Hospital of Dalarna County between year 1996 to 2014 with information on the three main disciplines of predictors of conventional tumour attributes, expression of hormonal receptors, and mammographic appearance. Among the study population, 251 event of breast cancer death were ascertained till the year 2015. Factors associated with breast cancer survival such as modality of therapy and detection mode were also collected.
Statistical Methods:
The time-to-event design in conjunction with the cured model for the building of the prediction of the breast cancer survival and the cure rate was applied. The effect of each discipline of breast cancer predictors on the risk of breast cancer death were first evaluated separately. In addition to the main effect, their interactive influence on breast cancer survival, focusing on the expression of hormonal receptors and mammographic appearance were also assessed based on the multivariate accelerated failure time model. Based on the joint results of the assessment on each discipline of predictors, a multi-disciplinary prediction model for the risk of breast cancer survival was constructed. With the consideration of both cured and survival probability, a cured model with Bayesian approach was developed to predict 30-yer survival of breast cancer to provide risk stratification of breast cancer.
Results:
As far as mammographic appearances are concerned, powdery and crushed had a very low rate of death, suggesting high possibility of over-diagnosis, whereas casting type and architectural distortion has a higher death rate probably requiring aggressive treatment and therapies.
Regarding molecular biomarkers, luminal A and B with low grade had lower death rate suggesting high possibility of over-diagnosis, but basal-like phenotype or triple negative breast cancer had a higher death rate probably requiring aggressive treatment and therapies.
We also estimated 55.7% breast cancer with completely cured after initial treatment therapy or overdiagnosis. The cured rate was highest for powdery (66%), followed by circular (62%), crushed-stone (58%), stellate (56%). The cure rate was very low for casting type and architecture distortion (19%). The cured probability for the molecular phenotype of luminal A (56%), luminal B (46%), and HER-2 (56%)were higher compared with basal phenotype (29%) and triple negative (31%).
Conclusion:
We developed a risk prediction model for breast cancer by using multidisciplinary factors. Such a risk prediction model is not only useful for the identification of high risk group (casting type /architecture and basal phenotype) so as to provide adequate intensive surveillance aggressive medical regime but also for the
identification of low risk (powdery and crushed stone and luminal A and B with low grade) in order to avoid unnecessary surveillance and treatment and therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:26:01Z (GMT). No. of bitstreams: 1
ntu-107-P05849007-1.pdf: 942137 bytes, checksum: 0755e3f5733eb8aacd618e5f6b0b984e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
1. Introduction ................................................................................................... 3
2. Literature review ........................................................................................... 8
2.1 Literature review on the prognostic factors of breast cancer .................. 8
2.1.1 Conventional tumour attributes .................................................... 8
2.1.2 Molecular biomarkers .................................................................. 10
2.1.3 Mammographic appearance ........................................................ 12
3. Material and Methods .................................................................................. 23
3.1 Data Sources ........................................................................................... 23
3.2 Statistical methods ................................................................................. 27
3.2.1 Weibull accelerated failure time model........................................ 27
3.2.2 Cured model ................................................................................. 30
4. Results .......................................................................................................... 34
4.1 Descriptive results on breast cancer survival ......................................... 34
4.2 The association between mammographic appearance and molecular phenotype ..................................................................................................... 40
4.3 Prognostic factors for breast cancer survival ......................................... 44
4.3.1 Effect of multi-disciplinary prognostic factors on breast cancer survival based on AFT model ............................................................... 44
4.3.2 Effect of multi-disciplinary prognostic factors on cured probability of breast cancer cases ........................................................................... 49
5. Discussion ..................................................................................................... 51
6. References .................................................................................................... 57
Table Contents
Table 4.1.1 Breast cancer survival by multidisplinary prognostic factors............37
Table 4.2.1 Descriptive results on the association between enrolled breast cancer cases diagnosed as Falun Central Hospital......................................................42
Table 4.2.2 Association between ductal adenocarcinoma of the breast and molecular subtypes of luminal A, luminal B, HER2, TNBC, and Basal-like classification........................................................................................................43
Table 4.3.1.1 Estimated results on the risk of breast cancer death by multi-disciplinary prognostic factors based on Weibull AFT model .......................46
Table 4.3.3.1 Estimated results on the cured probability of breast cancer cases by multi-disciplinary prognostic factors based on cured model .........................50
Figure Contents
Figure 4.1.1 Survival of breast cancer cases by tumor phenotypes.......................38
Figure 4.1.2 Survival of breast cancer cases by Mammographic appearances....39
Figure 4.3.1.1 Survival of breast cancer cases by mammographic appearance based on multivariate Weibull AFT model ......................................................47
Figure 4.3.1.2 Survival of breast cancer cases by molecular subtypes based on multivariate Weibull AFT model ......................................................................48
Figure 4.3.3.1 Cured probability by multi-disciplinary prognostic factors of mammographic appearance and molecular phenotype based on multivariate cured rate model. ...............................................................................................51 (a) Cured probability by molecular phenotype...............................................51 (b) Cured probability by mammographic appearance...................................51
dc.language.isozh-TW
dc.title利用多重預測因子發展乳癌個案之存活預測模式zh_TW
dc.titlePredicting Breast Cancer Survival by
Multi-disciplinary Attributes
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張金堅(King-jen Chang),陳祈玲
dc.subject.keyword乳癌,乳房攝影,顯微鈣化,三陰性,zh_TW
dc.subject.keywordbreast cancer,mammography,microcalcification,triple negative,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201802961
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
920.06 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved