請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董桂書(Kuei-Shu Tung) | |
| dc.contributor.author | Yi-Hsin Chen | en |
| dc.contributor.author | 陳怡欣 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:25:40Z | - |
| dc.date.available | 2023-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Adames, N.R., Oberle, J.R., and Cooper, J.A. (2001). The surveillance mechanism of the spindle position checkpoint in yeast. J. Cell Biol. 153, 159-168.
Asakawa, K., Yoshida, S., Otake, F., and Toh-e, A. (2001). A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae. Genetics 157, 1437-1450. Attner, M.A., and Amon, A. (2012). Control of the mitotic exit network during meiosis. Mol. Biol. Cell 23, 3122-3132. Bajgier, B.K., Malzone, M., Nickas, M., and Neiman, A.M. (2001). SPO21 is required for meiosis-specific modification of the spindle pole body in yeast. Mol. Biol. Cell 12, 1611-1621. Bardin, A.J., Visintin, R., and Amon, A. (2000). A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102, 21-31. Beissinger, M., and Buchner, J. (1998). How chaperones fold proteins. Biol. Chem. 379, 245-259. Boselli, M., Rock, J., Unal, E., Levine, S.S., and Amon, A. (2009). Effects of age on meiosis in budding yeast. Dev. Cell 16, 844-855. Briza, P., Breitenbach, M., Ellinger, A., and Segall, J. (1990). Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev. 4, 1775-1789. Briza, P., Ellinger, A., Winkler, G., and Breitenbach, M. (1988). Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J. Biol. Chem. 263, 11569-11574. Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986). Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J. Biol. Chem. 261, 4288-4294. Byers, B., and Goetsch, L. (1974). Duplication of spindle plaques and integration of the yeast cell cycle. Paper presented at: Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press). Caydasi, A.K., Ibrahim, B., and Pereira, G. (2010). Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div. 5, 28. Caydasi, A.K., Lohel, M., Grunert, G., Dittrich, P., Pereira, G., and Ibrahim, B. (2012). A dynamical model of the spindle position checkpoint. Mol. Syst. Biol. 8, 582. Chen, C.-Y. 2007. The interation of Ady3 and Tem1 with Hsp26 in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. Cheney, C.M., and Shearn, A. (1983). Developmental regulation of Drosophila imaginal disc proteins: synthesis of a heat shock protein under non-heat-shock conditions. Dev. Biol. 95, 325-330. D'Aquino, K.E., Monje-Casas, F., Paulson, J., Reiser, V., Charles, G.M., Lai, L., Shokat, K.M., and Amon, A. (2005). The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol. Cell 19, 223-234. Diamond, A.E., Park, J.S., Inoue, I., Tachikawa, H., and Neiman, A.M. (2009). The anaphase promoting complex targeting subunit Ama1 links meiotic exit to cytokinesis during sporulation in Saccharomyces cerevisiae. Mol. Biol. Cell 20, 134-145. Ehrnsperger, M., Gräber, S., Gaestel, M., and Buchner, J. (1997). Binding of non‐native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221-229. Esposito, R.E., and Klapholz, S. (1981). Meiosis and ascospore development. The molecular biology of the yeast Saccharomyces: life cycle and inheritance Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 211-287. Falk, J.E., Campbell, I.W., Joyce, K., Whalen, J., Seshan, A., and Amon, A. (2016). LTE1 promotes exit from mitosis by multiple mechanisms. Mol. Biol. Cell 27, 3991-4001. Hartwell, L.H. (1974). Saccharomyces cerevisiae Cell Cycle. Bacteriol. Rev. 38, 164-198. Herskowitz, I. (1988). Life Cycle of the Budding Yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 536-553. Ho, T.-M. 2005. The role of yeast Hsp26 in sporulattion. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. Hotz, M., and Barral, Y. (2014). The Mitotic Exit Network: new turns on old pathways. Trends Cell Biol. 24, 145-152. Hoyt, M.A. (2000). Exit from mitosis: spindle pole power. Cell 102, 267-270. Huang, H.-Y. 2014. The mechanism of Hsp26 regulating spore formation in budding yeast. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. Huang, Y. 2012. The role of yeast Hsp26 during prospore membrane formation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. Ireland, R.C., and Berger, E.M. (1982). Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc. Natl. Acad. Sci. 79, 855-859. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168. James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436. Jaspersen, S.L., and Winey, M. (2004). The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell Dev. Biol. 20, 1-28. Jäntti, J., Aalto, M.K., Öyen, M., Sundqvist, L., Keränen, S., and Ronne, H. (2002). Characterization of temperature-sensitive mutations in the yeast syntaxin 1 homologues Sso1p and Sso2p, and evidence of a distinct function for Sso1p in sporulation. J. Cell Sci. 115, 409-420. Knop, M., and Strasser, K. (2000). Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J. 19, 3657-3667. Kreger-Van Rij, N. (1978). Electron microscopy of germinating ascospores of Saccharomyces cerevisiae. Arch. Microbiol. 117, 73-77. Kurtz, S., Rossi, J., Petko, L., and Lindquist, S. (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 231, 1154-1157. Lam, C., Santore, E., Lavoie, E., Needleman, L., Fiacco, N., Kim, C., and Neiman, A.M. (2014). A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot. Cell 13, 383-391. Lew, D.J., and Burke, D.J. (2003). The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251-282. Lindquist, S., and Craig, E. (1988). The heat-shock proteins. Annu. Rev. Genet. 22, 631-677. Liu, Y.-C. 2016. The role of a spindle position checkpoint protein, Tem1, in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwan, National Taiwan University. Lynn, R.R., and Magee, P.T. (1970). Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J. Cell Biol. 44, 688. Maier, P., Rathfelder, N., Finkbeiner, M.G., Taxis, C., Mazza, M., Le Panse, S., Haguenauer-Tsapis, R., and Knop, M. (2007). Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J. 26, 1843-1852. Maier, P., Rathfelder, N., Maeder, C.I., Colombelli, J., Stelzer, E.H., and Knop, M. (2008a). The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J. 27, 2363-2374. Maier, P., Rathfelder, N., Maeder, C.I., Colombelli, J., Stelzer, E.H., and Knop, M. (2008b). The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J. 27, 2363-2374. Mason, P., Hall, L., and Gausz, J. (1984). The expression of heat shock genes during normal development in Drosophila melanogaster (heat shock/abundant transcripts/developmental regulation). Mol. Gen. Genet. 194, 73-78. Mathieson, E.M., Suda, Y., Nickas, M., Snydsman, B., Davis, T.N., Muller, E.G., and Neiman, A.M. (2010). Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 3693-3707. McAlister, L., and Finkelstein, D.B. (1980). Heat shock proteins and thermal resistance in yeast. Biochem. Biophys. Res. Commun. 93, 819-824. Miller, M.P., Ünal, E., Brar, G.A., and Amon, A. (2012). Meiosis I chromosome segregation is established through regulation of microtubule–kinetochore interactions. Elife 1, e00117. Moens, P.B., and Rapport, E. (1971). Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J. Cell Biol. 50, 344-361. Mohl, D.A., Huddleston, M.J., Collingwood, T.S., Annan, R.S., and Deshaies, R.J. (2009). Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. J. Cell Biol. 184, 527-539. Moreno-Borchart, A.C., Strasser, K., Finkbeiner, M.G., Shevchenko, A., Shevchenko, A., and Knop, M. (2001). Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. EMBO J. 20, 6946-6957. Morimoto, R.I., and Tissières, A. (1994). The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY. Nag, D.K., Koonce, M.P., and Axelrod, J. (1997). SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 7029-7039. Nakanishi, H., Morishita, M., Schwartz, C.L., Coluccio, A., Engebrecht, J., and Neiman, A.M. (2006). Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J. Cell Sci. 119, 1406-1415. Neff, N.F., Thomas, J.H., Grisafi, P., and Botstein, D. (1983). Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33, 211-219. Neiman, A.M. (1998). Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J. Cell Biol. 140, 29-37. Neiman, A.M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 565-584. Neiman, A.M. (2011). Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189, 737-765. Neiman, A.M., Katz, L., and Brennwald, P.J. (2000). Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae. Genetics 155, 1643-1655. Nelson, S.A., Sanson, A.M., Park, H.O., and Cooper, J.A. (2012). A novel role for the GTPase-activating protein Bud2 in the spindle position checkpoint. PLoS One 7, e36127. Nickas, M.E., and Neiman, A.M. (2002a). Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae. Genetics 160, 1439-1450. Nickas, M.E., Schwartz, C., and Neiman, A.M. (2003). Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot. Cell 2, 431-445. Pereira, G., and Schiebel, E. (2005). Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol. Cell 19, 209-221. Riedel, C.G., Mazza, M., Maier, P., Körner, R., and Knop, M. (2005). Differential requirement for phospholipase D/Spo14 and its novel interactor Sma1 for regulation of exocytotic vesicle fusion in yeast meiosis. J. Biol. Chem. 280, 37846-37852. Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual. 2001 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Scarfone, I., and Piatti, S. (2015). Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1. Small GTPases 6, 196-201. Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Laboratory course manual for methods in yeast genetics. Shonn, M.A., McCarroll, R., and Murray, A.W. (2000). Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300-303. Sirotkin, K., and Davidson, N. (1982). Developmentally regulated transcription from Drosophila melanogaster chromosomal site 67B. Dev. Biol. 89, 196-210. Smits, G.J., van den Ende, H., and Klis, F.M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781-794. Visintin, R., and Amon, A. (2001). Regulation of the mitotic exit protein kinases Cdc15 and Dbf2. Mol. Biol. Cell 12, 2961-2974. Visintin, R., Craig, K., Hwang, E.S., Prinz, S., Tyers, M., and Amon, A. (1998). The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709-718. Yang, H.J., Nakanishi, H., Liu, S., McNew, J.A., and Neiman, A.M. (2008). Binding interactions control SNARE specificity in vivo. J. Cell Biol. 183, 1089-1100. Yeh, E., Skibbens, R.V., Cheng, J.W., Salmon, E.D., and Bloom, K. (1995). Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130, 687-700. Zimmerman, J.L., Petri, W., and Meselson, M. (1983). Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32, 1161-1170. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70311 | - |
| dc.description.abstract | 我們實驗室在研究Hsp26蛋白於出芽酵母菌孢子形成過程中所扮演的角色時,發現有一個和Hsp26有關的紡錘體檢控點 (Hsp26-dependent spindle checkpoint),監控第二次減數分裂到孢子形成過程中紡錘體的形態是否適合形成孢子,藉此確保孢子的存活。先前發現Tem1和Ady3這兩個和Hsp26有交互作用的蛋白也參與此調控機制,Tem1蛋白是有絲分裂中mitotic exit network (MEN) pathway的重要成員,扮演類似感應器的角色,而Ady3蛋白則位於原生孢子膜 (prospore membrane) 前端,協助孢子形成。我們推測Tem1蛋白在Hsp26-dependent spindle checkpoint中可能也扮演著類似感應器的角色去偵測第二次減數分裂中紡錘體的形態是否適合形成孢子,並透過Hsp26蛋白來影響Ady3和Ssp1兩個前緣蛋白質 (leading edge protein) 的位置,以調控孢子形成。
為了瞭解其機制,本篇論文利用benomyl干擾紡錘絲的形成,發現不論在野生型酵母菌還是在hsp26突變細胞中,原生孢子膜的形成都不會受到影響,由此結果推論檢控點並不會調控原生孢子膜的生成,而是直接調控Ady3和Ssp1蛋白的定位以控制孢子可否形成。另外觀察到無論是Ady3、Ssp1或是Hsp26蛋白本身的表現並不會受到 benomyl處理影響,顯示其他蛋白質的共同參與此檢控點機制。 之前發現當細胞進行減數分裂時Tem1蛋白會被磷酸化,本實驗也發現此磷酸化並不受benomyl處理影響。綜合所有結果,本篇研究排除一些常見調控方式的可能性,幫助確定未來對此檢控點機制的研究方向。 | zh_TW |
| dc.description.abstract | Previous studies in our laboratory confirmed that there is a novel Hsp26-dependent spindle checkpoint during meiosis. The checkpoint monitors meiotic II spindle formation and regulates spore formation. In addition, two Hsp26-interacting proteins, Tem1 and Ady3, are involved in the checkpoint. Tem1 is an important component in the mitotic exit network (MEN) pathway, it plays a role of sensor for proper spindle positioning in a dividing cell. Ady3 is a component of the leading edge complex (LEP), associates with the growing prospore membrane (PSM) to assist proper spore formation. It was proposed that Tem1 might act as a sensor in the Hsp26-dependent spindle checkpoint to regulate the localization of Ady3 and Ssp1 into LEP.
In order to clarify the mechanism of the checkpoint, I used benomyl to interfere meiotic II spindle and found that PSM formation was not affected in the wild type, neither in the hsp26 mutant, indicating that PSM formation was not a target of the Hsp26-dependent spindle checkpoint. In addition, there was no detectable difference in the expression of Ady3, Ssp1 or Hsp26 after benomyl treatment, suggesting that there is other protein(s) involved in the checkpoint. It has been reported that Tem1 was phosphorylated during meiosis; however, phosphorylation of Tem1 was not affected in responding to spindle defects. In this study, I excluded some possibilities for certain regulatory mechanisms and provided useful clues for studying the mechanism of the Hsp26-dependent spindle checkpoint in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:25:40Z (GMT). No. of bitstreams: 1 ntu-107-R04b43029-1.pdf: 1823345 bytes, checksum: e498c222da77db07578835acb0e97c4a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 ------------------------------- i
ABSTRACT ---------------------------- ii TABLE OF CONTENTS --------------------- iv LIST OF TABLES ---------------------------- vii LIST OF FIGURES --------------------------- ix CHAPTER 1. INTRODUCTION --------------------------- 1 I. Vegetative cell division --------------------- 1 A. The spindle position checkpoint --------------------------- 2 B. Mitosis exit network -------------------------------------------------------------- 2 II. Sporulation --------------------------------------------------------------------------- 4 A. Meiosis ----------------------------------------------------------------------------- 4 B. Spore formation ------------------------------------------------------------------- 5 1. Prospore formation ------------------------------------------------------------- 5 (1) Modification of the spindle pole body ---------------------------------- 6 (2) Prospore membrane formation ------------------------------------------- 7 (3) Leading edge complex ---------------------------------------------------- 8 2. Spore wall synthesis ---------------------------------------------------------- 10 III. Yeast small heat shock proteins ------------------------------------------------- 11 IV. Specific aims ---------------------------------------------------------------------- 14 CHAPTER 2. MATERIALS AND METHODS ----------------------------------- 15 I. Culture conditions ------------------------------------------------------------------- 15 II. DNA preparation and transformation -------------------------------------------- 16 III. Plasmids constructions -------------------------------------------------------------- 17 IV. Yeast strains constructions ------------------------------------------------------- 23 V. Benomyl treatment ----------------------------------------------------------------- 29 VI. Protein extraction and Western blot analysis ---------------------------------- 29 VII. Cytology analyses ---------------------------------------------------------------- 31 A. Immunofluorescence with yeast cells ---------------------------------------- 31 B. Image analysis ------------------------------------------------------------------- 32 VIII. Yeast two-hybrid assay --------------------------------------------------------- 33 CHAPTER 3. RESULTS -------------------------------------------------------------- 34 I. Hsp26-interacting proteins -------------------------------------------------------- 34 A. The interaction of Hsp26 with Ady3 and Tem1 ----------------------------- 34 B. Tem1 had no interaction with Ady3 or Ssp1 --------------------------------- 35 II. Analysis of Hsp26 expression ---------------------------------------------------- 35 A. Epitope tagging of Hsp26 ------------------------------------------------------ 35 B. Complementation test of HSP26-3xmyc ------------------------------------- 36 C. Expression of Hsp26 during sporulation ------------------------------------- 37 D. There was no detectable modification of Hsp26 after benomyl treatment --- 38 III. Regulation of Ady3 and Ssp1 by the Hsp26-dependent spindle checkpoint -- 39 A. The expression of Ady3 and Ssp1 after benomyl treatment -------------------- 39 B. Constructions of HSP26 ADY3 and HSP26 SSP1 double tagged strains ---- 40 C. Benomyl trial of HSP26-3xmyc 3xHA-ADY3 and HSP26-3xmyc 3xHA-SSP1------------------------------- 41 IV. Analyses of the prospore membrane protein Spo20 ------------------------- 42 A. Epitope tagging of Spo20 ------------------------------------------------------ 42 B. 3xmyc-Spo20 and 6xmyc-Spo20 were detectable through Western blot analysis ------------------------------------------------------------------------------------------- 43 C. Benomyl trial of the SPO20 tagged strains ---------------------------------- 44 D. The Hsp26-dependent spindle checkpoint did not regulate PSM formation------------------------------------------------------------------------------------------- 45 V. Tem1 expression during sporulation ------------------------------------------- 46 A. pCLB2-TEM1-3xHA was shut down in meiosis ---------------------------- 46 B. TEM1-3xHA from its own promoter ------------------------------------------ 47 C. Phosphorylation of Tem1 did not respond to the benomyl treatment ---- 48 D. Stability of Tem1 is not dependent on Hsp26 ------------------------------- 49 CHAPTER 4. DISCUSSIONS ------------------------------------------------------------- 50 I. The Hsp26-dependent spindle checkpoint does not regulate the expression of Hsp26, Ady3 and Ssp1 ------------------------------------------------------------------ 50 II. The Hsp26-dependent spindle checkpoint might respond to spindle defects during PSM growth ---------------------------------------------------------------------- 51 III. The function of Tem1 in meiosis is subtle ------------------------------------------ 51 REFERENCES ------------------------------------------------------------------------------- 53 | |
| dc.language.iso | en | |
| dc.subject | 原生孢子膜 | zh_TW |
| dc.subject | 減數分裂 | zh_TW |
| dc.subject | 紡錘絲檢控點 | zh_TW |
| dc.subject | Hsp26蛋白 | zh_TW |
| dc.subject | Hsp26 | en |
| dc.subject | spindle checkpoint | en |
| dc.subject | prospore membrane | en |
| dc.subject | meiosis | en |
| dc.title | 酵母菌產生孢子過程中Hsp26相關紡錘體檢控點的調控機制 | zh_TW |
| dc.title | The regulatory mechanism of the Hsp26-dependent spindle checkpoint in yeast sporulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王廷方,蔡皇龍 | |
| dc.subject.keyword | Hsp26蛋白,紡錘絲檢控點,原生孢子膜,減數分裂, | zh_TW |
| dc.subject.keyword | Hsp26,spindle checkpoint,prospore membrane,meiosis, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201803216 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
