Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70289
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorMing-Yi Changen
dc.contributor.author張名熠zh_TW
dc.date.accessioned2021-06-17T04:25:20Z-
dc.date.available2023-08-20
dc.date.copyright2018-08-20
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation[1] B. Maier and J. O. Rädler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions, Physical Review Letters, vol. 82, no. 9, pp. 1911-1914, 03/01/ 1999.
[2] R. S. Dias, A. A. C. C. Pais, P. Linse, M. G. Miguel, and B. Lindman, Polyion Adsorption onto Catanionic Surfaces. A Monte Carlo Study, The Journal of Physical Chemistry B, vol. 109, no. 23, pp. 11781-11788, 2005/06/01 2005.
[3] X. Duan et al., Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study, The Journal of Physical Chemistry B, vol. 119, no. 19, pp. 6041-6049, 2015/05/14 2015.
[4] B. Maier and J. O. Rädler, DNA on Fluid Membranes: A Model Polymer in Two Dimensions, Macromolecules, vol. 33, no. 19, pp. 7185-7194, 2000/09/01 2000.
[5] Q. web. (2018). Chapter 7 - Part 2. Available: http://www.quia.com/jg/1794185list.html
[6] J. N. Israelachvili, Intermolecular and Surface Forces. 1985.
[7] L. Mariana Ruiz Villarreal (2018). Phospholipids aqueous solution structures. Available: https://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg
[8] A. F. Xie and S. Granick, Phospholipid membranes as substrates for polymer adsorption, Nature Materials, Article vol. 1, p. 129, 10/01/online 2002.
[9] I. Teraoka, Polymer Solutions: An Introduction to Physical Properties. 2002.
[10] P. J. Flory, Principles of polymer chemistry. Ithaca : Cornell University Press, 1953., 1953.
[11] 黃秋德, 以布朗動態法模擬DNA在微流道中受流場拉伸之研究, 碩士, 化學工程學研究所, 國立台灣大學, 2014.
[12] I. Teraoka, Polymer solutions : an introduction to physical properties. New York: Wiley, 2002.
[13] Y. Liu, Y. An, H. Yan, C. Guan, and W. Yang, Influences of three kinds of springs on the retraction of a polymer ellipsoid in dissipative particle dynamics simulation, Journal of Polymer Science Part B: Polymer Physics, vol. 48, no. 23, pp. 2484-2489, 2010/12/01 2010.
[14] C.-C. Hsieh, S. Jain, and R. G. Larson, Publisher’s Note: “Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models” [J. Chem. Phys. 124, 044911 (2006)],' The Journal of Chemical Physics, vol. 124, no. 17, p. 179901, 2006/05/07 2006.
[15] 王靜寬, 模擬DNA於脂雙層上自發展開之行為, 碩士, 化學工程學研究所, 國立臺灣大學, 2016.
[16] P. C. Hiemenz, and Timothy P.L., Polymer Chemistry. 2007.
[17] S. Tricard et al., Analog modeling of Worm-Like Chain molecules using macroscopic beads-on-a-string, Phys Chem Chem Phys, vol. 14, no. 25, pp. 9041-6, Jul 7 2012.
[18] J. F. Marko and E. D. Siggia, Stretching DNA, Macromolecules, vol. 28, no. 26, pp. 8759-8770, 1995/12/01 1995.
[19] P. Doyle and C.-C. Hsieh, Studyingconfinedpolymersusingsingle-molecule DNA experiments, Korea-Australia Rheology Journal, vol. 20, no. 3, pp. 127-142, 2008.
[20] F. Brochard and P. G. de Gennes, Dynamics of confined polymer chains, The Journal of Chemical Physics, vol. 67, no. 1, pp. 52-56, 1977/07/01 1977.
[21] T. Odijk, On the Statistics and Dynamics of Confined or Entangled Stiff Polymers, (in English), Macromolecules, vol. 16, no. 8, pp. 1340-1344, 1983.
[22] T. Odijk, Scaling theory of DNA confined in nanochannels and nanoslits, Phys Rev E Stat Nonlin Soft Matter Phys, vol. 77, no. 6 Pt 1, p. 060901, Jun 2008.
[23] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Third Edition), N. G. Van Kampen, Ed. Amsterdam: Elsevier, 2007.
[24] X. Duan et al., Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model, European Biophysics Journal, vol. 43, no. 8, pp. 377-391, 2014/09/01 2014.
[25] A. Huang and A. Bhattacharya, DNA confined in a two-dimensional strip geometry, EPL (Europhysics Letters), vol. 106, no. 1, p. 18004, 2014.
[26] W. F. van Gunsteren and H. J. C. Berendsen, Algorithms for brownian dynamics, Molecular Physics, vol. 45, no. 3, pp. 637-647, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70289-
dc.description.abstract目前已經有許多實驗觀察到當DNA吸附於帶有正電荷脂雙層表面時,會使脂雙層局部組成比例改變,並且DNA的運動遵守Rouse model,並受到脂雙層的電荷密度以及溶液離子強度的影響。本實驗室在低正電荷密度脂雙層,高離子強度溶液中所測得吸附態DNA的擴散係數與環動半徑(radius of gyration)與理論模型趨勢十分吻合;但在高正電荷密度脂雙層,低溶液離子強度溶液中所測得吸附態DNA的擴散係數與環動半徑則與理論模型預測有大幅偏差。我們推測此現象與DNA吸附後因為靜電交互作用力造成脂雙層局部組成比例改變有關,故運用模擬方法加以解析。
本研究運用布朗動態法(Brownian dynamics, BD)模擬DNA吸附於帶正電荷的脂雙層之行為,使用鏈球模型(bead-spring model)作為DNA的模型,首先設置一電荷密度均勻的xy平面作為對照組,接著分別以局部非勻相脂雙層模型(local heterogeneous model)和由兩種電荷密度不同且只在xy平面運動的小球所組成的可流動脂雙層模型來加以檢驗。在勻相脂雙層模型下,DNA行為為正規擴散,但沒有實驗中所觀察到的次級擴散(sub-diffusion)。在局部非勻相脂雙層模型下,吸附態DNA運動出現許多黏滯點(sticky points),有觀察到次級擴散(sub-diffusion)但沒有正規擴散(normal diffusion)。
我們推測吸附態DNA的正規擴散行為是來自脂雙層的運動,因此我們利用在xy平面運動並有著不同電荷密度的兩種小球來模擬二維脂雙層的運動,同時此模型能因與DNA的靜電交互作用力而自然形成局部非勻相。在可流動脂雙層模型中,我們分別以脂雙層電荷密度和溶液離子強度為變因。首先在固定溶液離子強度下,隨著脂雙層電荷密度增加,DNA從部分吸附轉變為完全吸附於脂雙層表面,其擴散係數有顯著的下降,環動半徑也隨之增加,但當電荷密度增加到足以將DNA完全吸附於脂雙層表面後,繼續增加脂雙層電荷密度對DNA擴散係數卻沒有太大影響;環動半徑則些微增大。接著,通過改變德拜長度(Debye length)得以實現改變模擬系統中的溶液離子強度,隨著德拜長度增加,相當於降低溶液離子強度,DNA從部分吸附轉變為完全吸附於脂雙層表面,然而當DNA完全吸附於脂雙層表面後,再增加德拜長度(降低溶液離子強度)對DNA擴散係數一樣沒有太大的影響;環動半徑則小幅度增大。模擬結果與實驗中所觀察到的結果大相逕庭,並且未出現實驗中所觀察到的次級擴散行為。
通過模擬得知,(1)吸附態DNA的正規擴散行為來自脂雙層的運動(2)脂雙層局部非勻相並不會對侷限DNA而造成次級擴散行為。結合上述模擬的分析並配合實驗中觀察到的現象,我們推測造成DNA次級擴散行為來自基材表面缺陷而形成的局部位能井,故我們於可運動的二維脂雙層模型中加入數個位置固定,不具體積的點電荷來模擬位能井。通過改變井的電荷密度,使得吸附態DNA出現不同程度的次級擴散行為,並且發現在高電荷密度以及低溶液離子強度,DNA初始吸附後確實會因位能井之侷限而無法延展,與我們實驗中所觀察到的現象一致,也就是模擬結果支持基材表面存在位能井的假設。
zh_TW
dc.description.abstractIt is observed in the experiments that when DNA is adsorbed on a positive charged lipid bilayer, its behavior follows Rouse model in two dimension. Moreover, the charge density of the lipid bilayer and the ionic strength of the solution have a significant influence on the behavior of adsorbed DNA. In our experimental observations, the diffusivity and the radius of gyration of the adsorbed DNA with low charge density of lipid bilayers and high ionic strength solution are in good agreement with the theoretical prediction. However, DNA behavior greatly deviates from the theoretical prediction when the measurement is taken at the lipid bilayer with high positive charge density or in the solution with low ionic strength. We supposed that this deviation is related to the change of the local composition of the lipid bilayer due to electrostatic interaction after DNA is adsorbed. Therefore, we intend to parse it with the help of simulation.
We used Brownian dynamics (BD) with bead-spring model to simulate the behavior of DNA adsorbed on positively charged lipid bilayers. We first set up a fixed lipid bilayer model with a uniform charge density and a local heterogeneous model. In the local heterogeneous lipid bilayer model, there existed many sticky points and sub-diffusion is also observed. However, normal diffusion DNA was not observed.
We speculated that the normal diffusion of adsorbed DNA comes from the movement of the lipids. Therefore, we used beads with different charges to simulate the lipids in two-dimensional bilayer. This model, called mobile lipid bilayer model, also allows the interaction between DNA and lipids, and therefore local heterogeneity can naturally occur. Under a constant ionic strength, the DNA conformation changes from partial adsorption to complete adsorption on the surface of the lipid bilayer as the charge density of the lipid bilayer increases. Furthermore, DNA radius of gyration increases but DNA diffusivity decreases. However, after the surface charge density is high enough to completely adsorb the DNA, increasing the charge density of the lipid bilayer does not have much effect on the DNA diffusivity and its radius of gyration. Under constant lipid charge density, we found that decreasing ionic strength has similar effects as increasing lipid charge density in our simulations. These results were quite different from those observed in our experiments, and the sub-diffusion observed in the experiment did not occur in this model.
From the simulation results, we have deduced that (1) the normal diffusion behavior of the adsorbed DNA comes from the movement of the lipids and (2) the local heterogeneity in system with mobile lipids does not restrict DNA motion and not cause the sub-diffusion. (3) Fixed charges can form sticky points and induce sub-diffusion. Combining above simulation analysis with the phenomenon observed in the experiments, we suspected that the surface defects might form several local energy wells which confine DNA motion. To simulate the effect of these energy wells, we added several fixed charge points without volume to the mobile lipid bilayer model to mimic the local energy well. By changing the charges of the energy well, the adsorbed DNA exhibits different degrees of sub-diffusion behavior. Moreover, we found that DNA is confined between fixed charges and cannot reach its equilibrium conformation at low ionic strength condition, consistent with our observation in experiments. Therefore, the simulation results support our postulation that there are potential wells existing on the lipid bilayers.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:20Z (GMT). No. of bitstreams: 1
ntu-107-R05524081-1.pdf: 10400958 bytes, checksum: 22e1bb82aef0df11e902143db8e6f9f6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XVII
符號表 XVIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第2章 文獻回顧 3
2.1 DNA的物理性質 3
2.1.1 去氧核糖核苷酸(DNA) 3
2.1.2 堅韌長度(Persistence length) 3
2.1.3 輪廓長度(Contour length) 4
2.1.4 擴散係數(Diffusivity) 4
2.1.5 迴旋鬆弛時間(Rotational relaxation time) 4
2.2 脂質 6
2.2.1 脂質結構 6
2.2.2 脂質自組裝 6
2.2.3 DNA在脂雙層上行為 8
2.3 高分子模型 10
2.3.1 理想鏈 10
2.3.1.1 首尾長度( end-to-end distance ) 11
2.3.1.2 環動半徑( Radius of gyration ) 12
2.3.2 真實鏈 14
2.3.3 Short-range interaction 與 Long-range interaction 16
2.3.4 珠棍模型(Bead-stick model or Bead-rod model) 18
2.3.5 珠簧模型(Bead-spring model) 19
2.3.5.1 FENE spring 20
2.3.6 蠕蟲鏈( Worm-like Chain ) 21
2.4 DNA於侷限環境內的行為 23
2.5 介觀尺度(mesoscale)模擬之簡介 25
2.6 DNA於2D侷限環境之相關研究 26
2.6.1 DNA於2D侷限環境之運動行為 26
2.6.2 脂雙層流動性對DNA吸附行為之影響 28
2.6.3 溶液離子強度與脂質電荷密度對DNA吸附行為之影響 30
2.7 本實驗室所量測DNA吸附於帶正電荷脂雙層之運動行為 34
2.7.1 DNA環動半徑受脂雙層表面電荷密度之影響 34
2.7.2 DNA環動半徑受溶液離子強度之影響 36
2.7.3 DNA環動半徑於高電荷密度脂雙層及低離子強度溶液之環境 37
2.7.4 DNA於脂雙層表面之擴散行為 38
2.8 本研究模擬策略之設計 40
第3章 模擬方法 41
3.1 布朗動態法(BD) 41
3.2 DNA模型 44
3.2.1 Lennard-Jones體積排斥力 44
3.2.2 FENE彈簧力 45
3.2.3 彎曲力 45
3.2.4 Debye-Hückel靜電作用力 46
3.3 脂雙層模型 46
3.4 週期性邊界條件(Period boundary conditions) 46
3.5 模擬參數 47
第4章 結果討論 48
4.1 DNA吸附於不可流動脂雙層模型 48
4.1.1 脂雙層局部非勻相對DNA運動之影響 52
4.2 DNA吸附於可流動脂雙層 56
4.2.1 與文獻結果比較 60
4.2.2 可流動脂雙層對DNA運動之影響 62
4.2.3 脂雙層電荷密度與溶液離子強度對DNA環動半徑之影響 64
4.2.4 脂雙層電荷密度與溶液離子強度對DNA擴散係數之影響 65
4.3 比較本研究中兩種不同脂雙層模型之結果 67
4.4 加入局部位能井於可流動脂雙層模型中 67
4.4.1 位能井電荷密度對DNA運動之影響 69
4.4.2 位能井德拜長度對DNA環動半徑之影響 73
4.4.3 與實驗結果比較 77
第5章 結論與未來展望 79
第6章 參考文獻 81
dc.language.isozh-TW
dc.title以布朗動態法研究表面正電荷密度及溶液離子強度對DNA在脂雙層上擴散行為之影響zh_TW
dc.titleUsing Brownian Dynamics Simulation Method to Analyze the Influence of Positive Charge Density and Solution Ionic Strength on the Behavior of Adsorbed DNA on Lipid Bilayersen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙玲(Chao Ling),江宏仁(Hong-Ren Jiang),莊怡哲(Yi-Je Juang)
dc.subject.keywordDNA,脂雙層,布朗動態法,次擴散,表面正電荷密度,溶液離子強度,zh_TW
dc.subject.keywordDNA,lipid bilayers,Brownian dynamics,sub-diffusion,surface charge density,solution ionic strength,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201803481
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved