Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江宏仁(Hong-Ren Jiang)
dc.contributor.authorYi-Wei Chiangen
dc.contributor.author姜翊惟zh_TW
dc.date.accessioned2021-06-17T04:25:05Z-
dc.date.available2020-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation1 Sheng-Chun Hung, Omkar A. Nafday, Jason R. Haaheim, Fan Ren, G. C. Chi, and Stephen J. Pearton, The Journal of Physical Chemistry C 114 (21), 9672 (2010).
2 T. Bhuvana and G. U. Kulkarni, ACS Nano 2 (3), 457 (2008).
3 Fang Hui, Wu Yin, Zhao Jiahao, and Zhu Jing, Nanotechnology 17 (15), 3768 (2006).
4 Amanda J. Haes and Richard P. Van Duyne, Journal of the American Chemical Society 124 (35), 10596 (2002).
5 Li Bing, Goh Chin Foo, Zhou Xiaozhu, Lu Gang, Tantang Hosea, Chen Yanhong, Xue Can, Boey Freddy Y. C., and Zhang Hua, Advanced Materials 20 (24), 4873 (2008).
6 Papadopoulos Chris and Omrane Badr, Advanced Materials 20 (7), 1344 (2008).
7 Chang H. Lee, Mikella E. Hankus, Limei Tian, Paul M. Pellegrino, and Srikanth Singamaneni, Analytical Chemistry 83 (23), 8953 (2011).
8 Takashi Ito and Shinji Okazaki, Nature 406, 1027 (2000).
9 Younan Xia and and George M. Whitesides, Annual Review of Materials Science 28 (1), 153 (1998).
10 Yueh-Lin Loo, Robert L. Willett, Kirk W. Baldwin, and John A. Rogers, Journal of the American Chemical Society 124 (26), 7654 (2002).
11 Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, Science 272 (5258), 85 (1996).
12 Pratik Shah, Yannis Kevrekidis, and Jay Benziger, Langmuir 15 (4), 1584 (1999).
13 Alexander S. Urban, Andrey A. Lutich, Fenando D. Stefani, and Jochen Feldmann, Nano Letters 10 (12), 4794 (2010).
14 Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, and Chad A. Mirkin, Science 283 (5402), 661 (1999).
15 Chad R. Barry, Nyein Z. Lwin, Wei Zheng, and Heiko O. Jacobs, Applied Physics Letters 83 (26), 5527 (2003).
16 Eugenii U. Donev and J. Todd Hastings, Nano Letters 9 (7), 2715 (2009).
17 Qing Ma, R. Divan, D. C. Mancini, R. A. Rosenberg, J. P. Quintana, and D. T. Keane, Applied Physics Letters 89 (8), 083114 (2006).
18 Sakamoto Masanori, Tachikawa Takashi, Fujitsuka Mamoru, and Majima Tetsuro, Advanced Materials 20 (18), 3427 (2008).
19 X. Z. Huang, X. X. Zhong, Y. Lu, Y. S. Li, A. E. Rider, S. A. Furman, and K. Ostrikov, Nanotechnology 24 (9), 095604 (2013).
20 Tingting Yan, Xiaoxia Zhong, Amanda Evelyn Rider, Yi Lu, Scott A. Furman, and Kostya Ostrikov, Chemical Communications 50 (24), 3144 (2014).
21 ChangMing Du and MuDan Xiao, Scientific Reports 4, 7339 (2014).
22 Seung Whan Lee, Dong Liang, Xuan P. A. Gao, and R. Mohan Sankaran, Advanced Functional Materials 21 (11), 2155 (2011).
23 T. Honegger, O. Lecarme, K. Berton, and D. Peyrade, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28 (6), C6I14 (2010).
24 Kamlesh Panwar, Manjeet Jassal, and Ashwini K. Agrawal, Particuology 19 (Supplement C), 107 (2015).
25 Yi Wang, Bao-Hua Guo, Xian Wan, Jun Xu, Xin Wang, and Yin-Ping Zhang, Polymer 50 (14), 3361 (2009).
26 Kyung-Ho Roh, David C. Martin, and Joerg Lahann, Nat Mater 4 (10), 759 (2005).
27 Kurt H Becker, U Kogelschatz, KH Schoenbach, and RJ Barker, Non-equilibrium air plasmas at atmospheric pressure. (CRC press, 2004).
28 CJ Mojab, Jornal of Vacuum Science and Technology 19 (3), 812 ( 1981).
29 V.I. Arkhipenko, A.A. Kirillov, Y.A. Safronau, L.V. Simonchik, and S.M. Zgirouski, Eur. Phys. J. D 66 (10), 252 (2012).
30 Jian-Zhang Chen, Cheng-Che Hsu, Ching Wang, Wei-Yang Liao, Chih-Hung Wu, Ting-Jui Wu, Hsiao-Wei Liu, Haoming Chang, Shao-Tzu Lien, Hsin-Chieh Li, Chun-Ming Hsu, Peng-Kai Kao, Yao-Jhen Yang, and I-Chun Cheng, Coatings 5 (1), 26 (2015).
31 S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, and J. Robertson, Journal of Applied Physics 94 (9), 6005 (2003).
32 M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, Journal of Applied Physics 90 (10), 5308 (2001).
33 Willem Elenbaas, The high pressure mercury vapour discharge. (North-Holland publishing company, 1951).
34 E. E. Kunhardt, IEEE Transactions on Plasma Science 8 (3), 130 (1980).
35 Yuri P Raizer, (1991).
36 Paschen Friedrich, Annalen der Physik 273 (5), 69 (1889).
37 Michael A Lieberman and Alan J Lichtenberg, Principles of plasma discharges and materials processing. (John Wiley & Sons, 2005).
38 A. Schutze, J. Y. Jeong, S. E. Babayan, Park Jaeyoung, G. S. Selwyn, and R. F. Hicks, IEEE Transactions on Plasma Science 26 (6), 1685 (1998).
39 Gordon Francis, Handbuch der physik 22, 53 (1956).
40 Brandenburg Ronny, Plasma Sources Science and Technology 26 (5), 053001 (2017).
41 H. Ayan, D. Staack, G. Fridman, A. Gutsol, Y. Mukhin, A. Starikovskii, A. Fridman, and G. Friedman, Journal of Physics D: Applied Physics 42 (12), 125202 (2009).
42 Haiyun Luo, Junxia Ran, and Xinxin Wang, IEEE Transactions on Plasma Science 42 (10), 2842 (2014).
43 Nai-Yi Cui and Norman M. D. Brown, Applied Surface Science 189 (1), 31 (2002).
44 Gregory Fridman, Alexey Shereshevsky, Monika M Jost, Ari D Brooks, Alexander Fridman, Alexander Gutsol, Victor Vasilets, and Gary Friedman, Plasma Chemistry and Plasma Processing 27 (2), 163 (2007).
45 Ingrid E Kieft, Moamina Kurdi, and Eva Stoffels, IEEE transactions on Plasma Science 34 (4), 1331 (2006).
46 Dongping Liu, Tengcai Ma, Shiji Yu, Yong Xu, and Xuefeng Yang, Journal of Physics D: Applied Physics 34 (11), 1651 (2001).
47 Ulrich Kogelschatz, Plasma chemistry and plasma processing 23 (1), 1 (2003).
48 Baldur Eliasson, M Hirth, and Ulrich Kogelschatz, Journal of Physics D: Applied Physics 20 (11), 1421 (1987).
49 Sid Ahmed Ahmedou Saleck, Olivier Rouaud, and Michel Havet, Electrohydrodynamic enhancement of heat and mass transfer in food processes. (2007).
50 A. Mraihi, N. Merbahi, M. Yousfi, A. Abahazem, and O. Eichwald, Plasma Sources Science and Technology 20 (6), 065002 (2011).
51 Ming-wei Li, Gen-hui Xu, Yi-ling Tian, Li Chen, and Hua-feng Fu, The Journal of Physical Chemistry A 108 (10), 1687 (2004).
52 Ji-Jun Zou, Yue-ping Zhang, and Chang-Jun Liu, International Journal of Hydrogen Energy 32 (8), 958 (2007).
53 Novák Igor, Pollák Vladimír, and Chodák Ivan, Plasma Processes and Polymers 3 (4‐5), 355 (2006).
54 M. Pascual, R. Balart, L. Sánchez, O. Fenollar, and O. Calvo, Journal of Materials Science 43 (14), 4901 (2008).
55 A. Mizuno, R. Shimizu, A. Chakrabarti, L. Dascalescu, and S. Furuta, IEEE Transactions on Industry Applications 31 (5), 957 (1995).
56 S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, Plasma Sources Science and Technology 7 (3), 286 (1998).
57 M. Teschke, J. Kedzierski, E. G. Finantu-Dinu, D. Korzec, and J. Engemann, IEEE Transactions on Plasma Science 33 (2), 310 (2005).
58 Y. Cao X. Lu, P. Yang, Q. Xiong, Z. Xiong, Y. Xian and Y. Pan, IEEE Transactions on Plasma Science 37, 668 (2009).
59 X. Lu, M. Laroussi, and V. Puech, Plasma Sources Science and Technology 21 (3), 034005 (2012).
60 J. Pawłat, M. Kwiatkowski, P. Terebun, and T. Murakami, IEEE Transactions on Plasma Science 44 (3), 314 (2016).
61 Lang Liu, Dong Ye, Yao Yu, Lin Liu, and Yue Wu, Carbon 111 (Supplement C), 121 (2017).
62 M. Mildner, D. Korzec, and J. Engemann, Surface and Coatings Technology 112 (1), 366 (1999).
63 Wei-Chun Ma, Ching-Yuan Tsai, and Chun Huang, Surface and Coatings Technology 259, 290 (2014).
64 Won-Seok Kang, Yong-Cheol Hong, Yoo-Beom Hong, Jae-Ho Kim, and Han Sup Uhm, Surface and Coatings Technology 205, S418 (2010).
65 A. F. H. van Gessel, K. M. J. Alards, and P. J. Bruggeman, Journal of Physics D: Applied Physics 46 (26), 265202 (2013).
66 Ibrahim Khan, Khalid Saeed, and Idrees Khan, Arabian Journal of Chemistry (2017).
67 Liang Wang and Yusuke Yamauchi, Journal of the American Chemical Society 135 (45), 16762 (2013).
68 Heberton Wender, Luciane F. de Oliveira, Pedro Migowski, Adriano F. Feil, Elizeo Lissner, Martin H. G. Prechtl, Sergio R. Teixeira, and Jairton Dupont, The Journal of Physical Chemistry C 114 (27), 11764 (2010).
69 Vincenzo Amendola, Stefano Polizzi, and Moreno Meneghetti, The Journal of Physical Chemistry B 110 (14), 7232 (2006).
70 Yugang Sun and Younan Xia, Science 298 (5601), 2176 (2002).
71 Wu J.‐J. and Liu S.‐C., Advanced Materials 14 (3), 215 (2002).
72 M. Carmen Bautista, Oscar Bomati-Miguel, María del Puerto Morales, Carlos J. Serna, and Sabino Veintemillas-Verdaguer, Journal of Magnetism and Magnetic Materials 293 (1), 20 (2005).
73 Roger Mueller, Lutz Mädler, and Sotiris E. Pratsinis, Chemical Engineering Science 58 (10), 1969 (2003).
74 J. Karthikeyan, C. C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Materials Science and Engineering: A 238 (2), 275 (1997).
75 Ruixue Wang, Shasha Zuo, Dong Wu, Jue Zhang, Weidong Zhu, Kurt H. Becker, and Jing Fang, Plasma Processes and Polymers 12 (4), 380 (2015).
76 Ruixue Wang, Shasha Zuo, Weidong Zhu, Shan Wu, Weifeng Nian, Jue Zhang, and Jing Fang, Plasma Processes and Polymers 11 (1), 44 (2014).
77 Fumitaka Mafuné, Jun-ya Kohno, Yoshihiro Takeda, Tamotsu Kondow, and Hisahiro Sawabe, The Journal of Physical Chemistry B 104 (39), 9111 (2000).
78 An Kwangjin and Somorjai Gabor A., ChemCatChem 4 (10), 1512 (2012).
79 J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, Nanotechnology 24 (24), 245604 (2013).
80 Carolyn Richmonds and R. Mohan Sankaran, Applied Physics Letters 93 (13), 131501 (2008).
81 Jun Kang, Oi Lun Li, and Nagahiro Saito, Carbon 60, 292 (2013).
82 P. Sear Richard, Journal of Physics: Condensed Matter 19 (3), 033101 (2007).
83 C. Casagrande, P. Fabre, E. Raphaël, and M. Veyssié, EPL (Europhysics Letters) 9 (3), 251 (1989).
84 P. Yánez-Sedeño, S. Campuzano, and J. M. Pingarrón, Applied Materials Today 9, 276 (2017).
85 de Gennes Pierre‐Gilles, Angewandte Chemie International Edition in English 31 (7), 842 (1992).
86 Andreas Walther and Axel H. E. Muller, Soft Matter 4 (4), 663 (2008).
87 Liang Hong, Shan Jiang, and Steve Granick, Langmuir 22 (23), 9495 (2006).
88 Shah Rhutesh K., Kim Jin‐Woong, and Weitz David A., Advanced Materials 21 (19), 1949 (2009).
89 Saifullah Lone, Sung Hoon Kim, Seong Won Nam, Sungsu Park, Jin Joo, and In Woo Cheong, Chemical Communications 47 (9), 2634 (2011).
90 Kamlesh Panwar, Manjeet Jassal, and Ashwini K. Agrawal, Applied Surface Science 411, 368 (2017).
91 ChangMing Du and MuDan Xiao, 4, 7339 (2014).
92 Il Gyo Koo, Myoung Seok Lee, Jae Hee Shim, Jae Hwan Ahn, and Woong Moo Lee, Journal of Materials Chemistry 15 (38), 4125 (2005).
93 Brian J. Polk, Melanie Bernard, John J. Kasianowicz, Martin Misakian, and Michael Gaitan, Journal of The Electrochemical Society 151 (9), C559 (2004).
94 J. B. Segur and Helen E. Oberstar, Industrial & Engineering Chemistry 43 (9), 2117 (1951).
95 Lin Wang, Ran Zhao, Xin-wei Wang, Lei Mei, Li-yong Yuan, Shu-ao Wang, Zhi-fang Chai, and Wei-qun Shi, CrystEngComm 16 (45), 10469 (2014).
96 Fang-Chia Chang, Carolyn Richmonds, and R. Mohan Sankaran, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28 (4), L5 (2010).
97 Martin Lundqvist, Johannes Stigler, Giuliano Elia, Iseult Lynch, Tommy Cedervall, and Kenneth A. Dawson, Proceedings of the National Academy of Sciences 105 (38), 14265 (2008).
98 Chad D. Markert, Xinyi Guo, Aleksander Skardal, Zhan Wang, Shantaram Bharadwaj, Yuanyuan Zhang, Keith Bonin, and Martin Guthold, Journal of the Mechanical Behavior of Biomedical Materials 27 (Supplement C), 115 (2013).
99 Vesselin N. Paunov, Langmuir 19 (19), 7970 (2003).
100 Seonghun Park, Cong-Truyen Duong, Jae-Hoon Lee, Sang-Soo Lee, and Kwon Son, International Journal of Precision Engineering and Manufacturing 11 (1), 129 (2010).
101 Kevin D. Costa, Disease Markers 19 (2-3), 139 (2004).
102 Shekhar Agnihotri, Soumyo Mukherji, and Suparna Mukherji, RSC Advances 4 (8), 3974 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70273-
dc.description.abstract大氣噴射電漿(atmospheric-pressure plasma jet)除了應用於處理固體表面,近年來應用在處理液相方面受到極大的關注。過去許多研究指出大氣噴射電漿可以持續提供電子並且還原溶液中的金屬離子,相較於傳統電鍍,金屬被還原並附著在陰極電極上,而大氣噴射電漿的陰極為氣相電極,金屬晶粒直接在溶液中成核。我們發現某些條件改變時(例如:溶液黏度、溶液種類、陽極親疏水性…等),成核點和晶粒形狀會有所改變,甚至會在陽極表面成核。根據以上特性,我們提出一種新的表面合成奈米金屬技術,能在濕潤的固體表面用大氣噴射微電漿直接寫出奈米金屬。
在過去許多大氣噴射電漿合成奈米金屬的文獻中,大部分都是在溶液中合成奈米金屬及其應用,在固液界面合成奈米金屬和成核點的研究非常少,所以本論文主要分成兩個部分,第一部份為研究溶液及表面特性與成核點的關係;第二部分則是將此技術在應用在製備Janus粒子上。
本論文第一部份,首先我們使用雷射打標機增加氧化銦錫玻璃(Indium tin oxide glass, ITO)親水性,並在上面滴上硝酸銀溶液,在這實驗中我們觀察到在電極邊緣有較多的銀奈米顆粒。接著我們將氧化銦錫玻璃使用氧電漿處理增加其親水性,並比較在相同溶液深度下親疏水成核之差異,相較於未處理之氧化銦錫玻璃,在氧電漿處理後的氧化銦錫玻璃銀奈米顆粒更容易從硝酸銀被還原出來。為了觀察溶液對成核的影響,我們在溶液中分別添加甘油和聚乙二醇改變溶液黏度,以及在溶液中添加聚苯乙烯粒子增加成核點,結果顯示成核點確實會因為溶液成份而有所改變,甚至會影響到晶形。
根據第一部分之結果在本論文第二部分,我們將此技術應用在製備銀奈米顆粒塗層Janus粒子。我們將單層聚苯乙烯粒子鋪在含有硝酸銀溶液瓊脂糖凝膠上,由於瓊脂糖凝膠機械性質以及極薄的水膜,在聚苯乙烯粒子周圍水膜的表面張力會造成瓊脂糖凝膠凹陷,當使用大氣噴射微電漿處理時銀奈米顆粒將被還原出來並附著於聚苯乙烯粒子下半球。根據此實驗結果,我們提出一種新的製備銀奈米顆粒塗層Janus粒子的技術,此技術能夠調整銀奈米顆粒的大小以及覆蓋程度,而且在銀奈米顆粒塗層Janus粒子能夠觀察表面電漿子效應,因此可將此種粒子應用在表面偵測和抗菌等方面。
zh_TW
dc.description.abstractAtmospheric-pressure plasma jet (APPJ) is not only used to treat the solid surface but also attracts great attention in the liquid phase. In particular, many studies report that the electrons could be provided continuously by APPJ to reduce the metal ions in the solution. Compared with the cathode of traditional electroplating, the cathode of APPJ is gas electrode. Hence, the metal crystals are nucleated in the solution. However, we observe that the nucleation site and the crystal shape would be changed in some condition (e.g. viscosity of the solution, additive, hydrophilicity of anode, etc.). The metal crystals are even nucleated on the anode. Based on these features, we propose a new technology which is directly writing metallic nanoparticles on the moist surface by APPJ.
In the previous studies about the synthesis of metal nanoparticles by APPJ, most of them are the synthesis of metal nanoparticles in the solution and its application. It is rare to study the synthesis of metal nanoparticles on the solid surface and the nucleation site of metal nanoparticles, so this thesis is mainly divided into two parts. The first part is to study the effect of solution and surface properties on nucleation sites. In the second part, we prepare Janus particles on the moist surface by microplasma.
In the first part of this paper, we use the laser marking machine to increase the hydrophilicity of Indium tin oxide (ITO) glass on which the silver nitrate solution was drop-coated. In this experiment, we observe that there are many Ag nanoparticles on the edge of the electrode. We also use the oxygen plasma to increase the hydrophilicity of the ITO glass and compare the difference between hydrophilic and hydrophobic nucleation at the same liquid level. Compare with the ITO glass without oxygen plasma treatment, the Ag nanoparticles are easily reduced on the hydrophilic ITO glass. In order to observe the influence of solution, we add glycerol and polyethylene glycol respectively to the solution to change the viscosity of the solution, in addition, we add the polystyrene particles to increase the nucleation site. The results show that the nucleation sites do change due to solution composition and even affect the crystal shapes.
Based on the results of the first part, we apply this technique in the preparation of Ag nanoparticles coated Janus particles in the second part. The monolayer of PS particles is prepared on the agarose gel which contains the silver nitrate solution. Due to the mechanical properties and the thin water film of agarose gel, the indentation of agarose gel is caused by the surface tension of water film around the PS particles. When the atmospheric microplasma jet applied, the Ag nanoparticles will be reduced and attached to the lower hemisphere of PS particles. Based on the experiment results, we propose a new technology for preparing Ag nanoparticles coated Janus particles. This technology can adjust the particles size of Ag nanoparticles and the coverage of Janus particles. Moreover, the surface plasmon can also be observed, which makes the particles useful for the application of surface sensing and antibacterial function.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:05Z (GMT). No. of bitstreams: 1
ntu-107-R05543080-1.pdf: 5691487 bytes, checksum: 952fc3a25d8a08d02072b39040fcebb6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VII
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1 發展背景與動機 1
1.2 論文架構 3
第二章 文獻回顧和理論背景 4
2.1 電漿 4
2.1.1 電漿形成原理 4
2.1.2 大氣電漿 9
2.2 合成金屬奈米粒子 14
2.2.1 雷射剝蝕 15
2.2.2 化學合成 16
2.2.3 電漿合成 17
2.3 成核 18
2.3.1 古典成核理論 18
2.4 Janus粒子 19
2.4.1 製備Janus粒子 20
第三章 實驗方法和器材準備 23
3.1 大氣電漿架設 23
3.2 在固液介面上合成奈米金屬 24
3.2.1 表面親水處理 25
3.2.2 表面起伏製作 26
3.2.3 溶液性質 27
3.3 在瓊脂糖凝膠上製作Janus粒子 28
3.4 吸收光譜量測 29
3.5 在濾紙上合成奈米顆粒 30
3.6 其他儀器 31
第四章 在固液介面上合成奈米金屬 32
4.1 親疏水性對固液介面上合成奈米金屬之影響 32
4.2 表面起伏對固液介面上合成奈米金屬之影響 34
4.3 溶液深度與覆蓋率之關係 37
4.4 溶液性質對顆粒形狀、成核位置的影響 38
4.4.1 甘油 38
4.4.2 聚乙二醇 40
4.4.3 瓊脂糖 42
4.4.4 聚山梨醇酯 20 43
4.5 聚苯乙烯粒子對成核位置之影響 45
4.6 結論 47
第五章 在溼潤表面合成奈米金屬之應用 48
5.1 在瓊脂糖凝膠上製備Janus粒子 48
5.1.1 大氣微電漿掃描速率對銀奈米顆粒塗層影響 48
5.1.2 瓊脂糖濃度與銀奈米顆粒塗層覆蓋率之關係 49
5.1.3 Jauns粒子之表面電漿子效應 52
5.2 在濾紙上合成銀奈米顆粒 55
5.2.1 大氣微電漿掃描速率與顆粒大小之關係 55
5.2.2 硝酸銀濃度與顆粒大小之關係 56
5.3 結論 58
第六章 總結與未來展望 60
6.1 總結 60
6.2 未來展望 61
參考文獻 63
附錄一 69
dc.language.isozh-TW
dc.subject瓊脂糖凝膠zh_TW
dc.subjectJanus粒子zh_TW
dc.subject微電漿zh_TW
dc.subject銀奈米顆粒zh_TW
dc.subject大氣噴射電漿zh_TW
dc.subject成核zh_TW
dc.subjectmicroplasmaen
dc.subjectJanus particlesen
dc.subjectagarose gelen
dc.subjectnucleationen
dc.subjectatmospheric plasma jeten
dc.subjectAg nanoparticlesen
dc.title利用大氣微電漿在固液介面合成奈米金屬之研究zh_TW
dc.titleStudy of metal nanoparticles synthesized at the solid-liquid interface by atmospheric microplasmaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰(Jian-Zhang Chen),許聿翔(Yu-Hsiang Hsu)
dc.subject.keyword大氣噴射電漿,微電漿,銀奈米顆粒,成核,瓊脂糖凝膠,Janus粒子,zh_TW
dc.subject.keywordatmospheric plasma jet,microplasma,Ag nanoparticles,nucleation,agarose gel,Janus particles,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201803422
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved