請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70267完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Yi-Ting Liu | en |
| dc.contributor.author | 劉怡廷 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:25:01Z | - |
| dc.date.available | 2021-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | 1.陳怡秀,化學機械研磨阻障層鉭與其電化學特性的研究,國立臺灣大學博士論文,2010.
2.Pletcher, D. and Walsh, F.C., Industrial Electrochemistry, Blackie academic & Professional, 1990,128, 394-397, 414. 3.Yen, M.-Y., Studies and Application of Organic Additives on Microvia Filling of Printed Circuit Boards by Copper Electroplating, National Chung Hsing University, 2013, 37-38. 4.曾琮瑋,銅電化學沉積電解液添加劑應用與旋轉流動電鍍槽之研究,國立臺灣大學碩士論文,2003. 5.Vereecken, P.M.; Binstead, R. A.; Deligianni, H.; Andricacos, P. C., The Chemistry of Additives in Damascene Copper Plating, IBM Journal of Research & Development, 2005, 49, 3-6. 6.Kelly, J. and West, A.C., Copper Deposition in the Presence of Polyethylene Glycol i. Quartz Crystal Microbalance Study, Journal of The Electrochemical Society, 1998, 145, 3472-3476. 7.Reid, J.D. and David, A.P., Impedance Behavior of a Sulfuric Acid-cupric sulfate/copper Cathode Interface, IBM Journal of Research & Development, 1987, 134, 1389-1394. 8.邱顯光,蔡明蒔,林鴻志,雙鑲嵌結構製作技術簡介,國家奈米元件實驗室奈米通訊,2014,36-39. 9.Andricacos, P.C.; Uzoh, C.; Dukovic, J.O.; Horkans, J.; Deligianni, H., Damascene Copper Electroplating for Chip Interconnections, IBM Journal of Research & Development, 1998, 42, 567-573. 10.Schlesinger, M. and Paunovic, M., Modern Electropating, Wiley, 2011, 1-14, 33-39. 11.Barnes, S.C., Twinning in Copper Electrodeposits, Acta Metallurgica, 1959, 7, 700. 12.Sroka, R. and Fischer, H.Z., Polarisation und Kristallwachstum bei der Elektrokristallisation von Kupfer, Zeitschrift für Elektrochemie, 1956, 60,109. 13.Bockris, J.O.M. and Conway,B.E. J., Determination of the Faradaic Impedance at Solid Electrodes and the Electrodeposition of Copper, Chemical Physics, 1958, 28, 707. 14.Mattsson, E. and Bockris, J.O.M., Galvanostatic Studies of the Kinetics of Deposition and Dissolution in the Copper/Copper Sulphate System, Transactions of the Faraday Society, 1958, 55, 1586-1601. 15.Hurlen, T., On the Kinetics of the Cu/Cu2+ Electrode, Acta Chemica Scandinavica, 1961, 15, 630-644. 16.Karasyk, L. and Linfird, H.B., Electrode Kinetic Parameters for Copper Deposition on Clean and Soiled Copper Cathodes, Journal of The Electrochemical Society, 1963, 110, 895-899. 17.Caban, R. and Chapman, T. W., Statistical Analysis of Electrode Kinetics Measurements-Copper Deposition from CuSO4-H2SO4 Solutions, Journal of The Electrochemical Society, 1977, 124, 1371-1378. 18.Hinatsu, J.T. and Foulkes, F.R., Electrochemical Kinetic Parameters for the Cathodic Deposition of Copper from Dilute Aqueous Acid Sulfate Solution, The Canadian Journal of Chemical Engineering, 1991, 69, 571-577. 19.Moats, M.S.; Hiskey, J.B.; Collins, D.W., The Effect of Copper Acid and Temperature on the Diffusion Coefficient of Cupric ions in Simulated Electrorefining Electrolytes, Hydrometallurgy, 2000, 56, 255-263. 20.Ostrow, B.D.; Bellmore, N.; Nobel, F.I., Additive for Copper Plating Bath, U.S. patent , 3021266, 1962. 21.Creutz, H.-G.; Stevenson, R.M.; Wood, G.P.; Romanowski E. A. ,Electrodeposition of Copper from Acid Baths, U.S. patent , 3328273, 1967. 22.Yokoi, M.; Kondo, K.; Akolkar, R.N.; Barkey, D.P., Copper Electrodeposition for Nanofabrication of Electronics Devices, Nanostructure Science and Technology, 2014, 171, Supression Effect and Additive Chemistry, 27-28, 30-31, 34-38, 41. 23.Kardos, O.; Durham, H.B.; Tomson, A.J.; Arcilesi, D. A., Electrodeposition of Copper, U.S. patent, 3542655, 1970. 24.Mirkova, L.; Rashkov S.T.; Nanev, C., The Levelling Mechanism during Bright acid Copper Plating, Surface Technology, 1982, 15, 181-190. 25.Hill, M.R.H. and Rogers, G.T., Polyethylene Glycol in Copper Electrodeposition onto a Rotating Disk Electrode, Journal of Electroanalytical Chemistry, 1978, 86, 179-184. 26.Healy, J.P. and Pletcher, D., The Chemistry of the Additives in an Acid Copper Electroplating Bath Part I Polyethylene Glycol and Chloride ion, Journal of Electroanalytical Chemistry, 1992, 338, 155-165. 27.Bard, A.J. and Faulkner, L.R., Electrochemical Methods Fundamentals and Applications, Wiley, 2001, 87-137, 305-306, 335-347. 28.Thompson, M.S.; Vadala, T.P.; Vadala M.L.; Lin, Y.; Riffle, J.S., Synthesis and Applications of Heterobifunctional Poly(ethylene oxide) Oligomers, Polymer, 2008, 49, 345-350. 29.Hsueh, L., Diffusion and Migration in Electrochemical Systems, Lawrence Berkeley National Laboratory, 1968, 132-135. 30.Copper Development Association, Copper and Copper Alloy Plating, Copper Development Association, 1964, 27-34. 31.Nagy, Z.; Blaudeau, J.P.; Hung, N.C.; Curtiss, L.A.; Zurawski, D.J., Chloride Ion Catalysis of the Copper Deposition Reaction, Journal of The Electrochemical Society, 1995, 142, 87-89. 32.Gauvin, W.H. and Winkler, C.A., The Effect of Chloride Ions on Copper Deposition, Journal of The Electrochemical Society, 1952, 99, 71-73, 75-77. 33.Lee, H.P. and Nobe, K., Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media, Journal of The Electrochemical Society, 1986, 133, 2035-2038. 34.Chen, H.-M., Parulekar,S.J. and Zduneka, A., Interactions of Chloride and Polyethylene Glycol in Acidic Copper Sulfate Electrolyte, Journal of The Electrochemical Society, 2008, 155, 341-344. 35.Feng, Z.V., Li, X. and Gewirth A.A., Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths : A Surface-Enhanced Raman Study, The Journal of Physical Chemistry, 2003, 107, 9415, 9420-9422. 36.Ko, S.-L.; Lin, J.-Y.; Wang, Y.-Y.; Wan, C.-C., Effect of the Molecular Weight of Polyethylene Glycol As Single Additive in Copper Deposition for Interconnect Metallization, Thin Solid Films, 2008, 516, 5046-5051. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70267 | - |
| dc.description.abstract | 酸性硫酸銅電鍍系統因環保性較佳,且成本較低,加入添加劑能使鍍層品質均勻性較一致,因此印刷電路板產業、IC 基板及半導體產業使用的銅電鍍以酸性硫酸銅電解液系統為主。本研究以酸性硫酸銅水溶液為核心,進行一系列探討,實驗含二部分,第一部分:銅電沉積效率計算及擴散係數量測;第二部分:探討再填加氯離子及各種高分子添加劑對銅的電沉積效應。於酸性硫酸銅水溶液,進行定電流密度銅電沉積,以法拉第定律計算,得到此實驗系統沉積效率約為99%。進行量測銅離子在各種不同濃度下的擴散係數,其值範圍在 3.82× 10^−10到 6.00× 10^−10 m2/s。
氯離子與聚合物作為添加劑,探討對銅電沉積帶來的影響,聚合物種類為三種,聚乙二醇 (PEG600, PEG8000)、聚乙二醇單甲醚 (MPEG2200)、EO-PO 嵌段共聚物 (BT50H1600, MEP49)。氯離子加入陰極極化曲線電流密度大幅提升,明顯呈現去極化作用,推測形成氯化亞銅吸附於電極表面穩定一價亞銅離子,之後還原成銅金屬。只添加聚合物於酸性硫酸銅水溶液,陰極極化曲線大致無明顯電流密度減小趨勢,證實聚合物需要與氯離子共同添加,才會產生極化作用,抑制 電流密度。在添加氯離子的情況下,比較同為聚乙二醇,但分子量不同的 PEG600與 PEG8000,發現分子量較大者,其極化作用較顯著,並且抑制電流密度範圍較廣,而且鍍層品質較佳。在添加氯離子的情況下,比較同為 EO-PO 嵌段共聚物的 BT50H1600 與 MEP49,進行定電流電鍍下,BT50H1600 的銅層品質不佳,量測極化曲線發現於特定電位範圍才產生極化作用,若超過此範圍則電流密度快速上升,失去抑制電流密度的效果。於酸性硫酸銅水溶液中添加 50 ppm 氯離子與 200ppm PEG8000 進行電鍍,所沉積的銅鍍層光澤度最佳並且平坦。 | zh_TW |
| dc.description.abstract | Acidic copper electroplating is eco-friendly, relatively inexpensive, and produces deposits of good uniformity with additives. So, acidic copper electroplating is the mainstream in the manufacturing of printed circuit boards, IC boards industry and semiconductor industry. This study will be focused on the additive effects of acidic copper sulphate solutions. The experimental work contains the two parts:One is for the copper deposition efficiency and diffusion coefficient measurements, the other is the effects of chloride ion and gycol polymers employed in copper deposition.
We measured and calculated the copper deposition efficiency at constant current density, the deposition efficiency was found to be 99% for the copper electrodeposition. The diffusion coefficients of the copper ions in various concentrations of the acidic copper sulphate solutions have been measured and found to be in the range of 3.82×10^(-10) to 6.00×10^(-10) m2/s. In the second part of this study, chloride ion and polymers have been investigated for the additive effect of copper electrodeposition. The polymers are polyethylene glycol (PEG600, PEG8000), methyl polyethylene glycol (MPEG2000), and EO-PO copolymer (BT50H1600, MEP49). The current densities of the cathodic polarization curves in the acidic copper sulphate solutions containing 50ppm chloride are higher than those without chloride, so the depolarization effect due to chloride presence is obvious. The solutions containing glycol polymers only, but without chloride, show no polarization effect. So, it can be figured out that the glycol polymer additives need to be added together with chloride to produce polarization effect. The acidic copper sulphate solutions containing 50 ppm chloride and 200 ppm PEG8000 produce the best electroplating quality among the five additive employed in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:25:01Z (GMT). No. of bitstreams: 1 ntu-107-R05524019-1.pdf: 4673925 bytes, checksum: 88df572c1122164cc05b4140dda87e84 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
摘要 I ABSTRACT II 圖目錄 III 表目錄 VIII 目錄 X 第一章 緒論 1 1-1 銅電沉積之應用 1 1-2銅金屬特性、銅電沉積系統與添加劑 6 1-3銅電沉積研究動機 10 第二章 文獻回顧 11 2-1銅導線製程-鑲嵌製程 11 2-2金屬沉積層結構 13 2-3在酸性硫酸銅溶液中之銅電沉積 15 2-4添加劑應用於銅電沉積 19 第三章 電化學原理 22 3-1旋轉盤電極系統 22 3-2三電極電化學測試系統 25 3-3電極反應與極化曲線 27 3-4計時電位法 30 第四章 電化學沉積實驗方法 31 4-1白金電極平坦化與表面拋光處理 31 4-2白金電極與銅線前處理 32 4-3銅電沉積效率 35 4-4定電流沉積 37 4-5極化曲線量測 38 4-6儀器設備、耗材與藥品 40 4-7添加劑介紹 42 第五章 結果與討論 47 5-1銅電沉積效率計算 47 5-2銅電沉積動力學 50 5-2-1酸性硫酸銅水溶液實驗量測參數 50 5-2-2以電導度檢測配藥準確度 50 5-2-3酸性硫酸銅水溶液中擴散與動力學參數 51 5-3添加劑應用於銅電沉積 61 5-3-1硫酸銅濃度對於銅電沉積的影響 61 5-3-2添加氯離子對於銅電沉積的影響 65 5-3-3僅添加聚合物對於銅電沉積的影響 68 5-3-4添加氯離子與聚合物對於銅電沉積的影響 77 5-3-4.1硫酸銅、硫酸、氯離子與聚合物PEG600溶液 77 5-3-4.2硫酸銅、硫酸、氯離子與聚合物PEG8000溶液 82 5-3-4.3硫酸銅、硫酸、氯離子與聚合物PEG600/PEG8000溶液 84 5-3-4.4硫酸銅、硫酸、氯離子與聚合物MPEG2200溶液 85 5-3-4.5硫酸銅、硫酸、氯離子與聚合物BT50H1600溶液 88 5-3-4.6硫酸銅、硫酸、氯離子與聚合物MEP49溶液 91 5-3-4.7硫酸銅、硫酸、氯離子與聚合物五種聚合物水溶液 94 第六章 結論 96 參考文獻 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 陰極極化曲線 | zh_TW |
| dc.subject | 銅電沉積 | zh_TW |
| dc.subject | 添加劑效應 | zh_TW |
| dc.subject | additive effect | en |
| dc.subject | cathodic polarization | en |
| dc.subject | copper electrodeposition | en |
| dc.title | 在酸性硫酸溶液中各種填加劑對銅電化學沉積之效應 | zh_TW |
| dc.title | The Effects of Additives on Copper Electrodepositions in Acidic Sulfate Solutions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周偉龍,吳永富,蔡子萱 | |
| dc.subject.keyword | 銅電沉積,添加劑效應,陰極極化曲線, | zh_TW |
| dc.subject.keyword | copper electrodeposition,additive effect,cathodic polarization, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201803462 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
