Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70250
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor魏安祺(An-Chi Wei)
dc.contributor.authorBo-Yen Huangen
dc.contributor.author黃博彥zh_TW
dc.date.accessioned2021-06-17T04:24:47Z-
dc.date.available2022-07-29
dc.date.copyright2021-01-20
dc.date.issued2020
dc.date.submitted2020-12-04
dc.identifier.citationBian, Yuchen, et al. 'Memory-based random walk for multi-query local community detection.' Knowledge and Information Systems (2019): 1-35.
Botello-Smith, Wesley M., et al. 'A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1.' Nature communications 10.1 (2019): 1-10.
De Vecchis, Dario, David J. Beech, and Antreas C. Kalli. 'Molecular principles of Piezo1 activation by increased membrane tension.' bioRxiv (2019): 823518.
Lin, Yi-Chih, et al. 'Force-induced conformational changes in PIEZO1.' Nature 573.7773 (2019): 230-234.
Wang, Li, et al. 'Structure and mechanogating of the mammalian tactile channel PIEZO2.' Nature 573.7773 (2019): 225-229.
Saotome, Kei, et al. 'Structure of the mechanically activated ion channel Piezo1.' Nature 554.7693 (2018): 481-486.
Szczot, Marcin, et al. 'PIEZO2 mediates injury-induced tactile pain in mice and humans.' Science translational medicine 10.462 (2018): eaat9892.
Zhao, Qiancheng, et al. 'Structure and mechanogating mechanism of the Piezo1 channel.' Nature 554.7693 (2018): 487-492.
Pfleger, Christopher, et al. 'Ensemble-and rigidity theory-based perturbation approach to analyze dynamic allostery.' Journal of chemical theory and computation 13.12 (2017): 6343-6357.
Veličković, Petar, et al. 'Graph attention networks.' arXiv preprint arXiv:1710.10903 (2017).
Amor, Benjamin RC, et al. 'Prediction of allosteric sites and mediating interactions through bond-to-bond propensities.' Nature communications 7.1 (2016): 1-13.
Dokholyan, Nikolay V. 'Controlling allosteric networks in proteins.' Chemical reviews 116.11 (2016): 6463-6487.
Kipf, Thomas N., and Max Welling. 'Semi-supervised classification with graph convolutional networks.' arXiv preprint arXiv:1609.02907 (2016).
Zhao, Qiancheng, et al. 'Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels.' Neuron 89.6 (2016): 1248-1263.
Coste, Bertrand, et al. 'Piezo1 ion channel pore properties are dictated by C-terminal region.' Nature communications 6.1 (2015): 1-11.
Dutta, Anindita, et al. 'Cooperative dynamics of intact AMPA and NMDA glutamate receptors: similarities and subfamily-specific differences.' Structure 23.9 (2015): 1692-1704.
Ge, Jingpeng, et al. 'Architecture of the mammalian mechanosensitive Piezo1 channel.' Nature 527.7576 (2015): 64-69.
Woo, Seung-Hyun, et al. 'Piezo2 is required for Merkel-cell mechanotransduction.' Nature 509.7502 (2014): 622-626.
Coste, Bertrand, et al. 'Piezo proteins are pore-forming subunits of mechanically activated channels.' Nature 483.7388 (2012): 176-181.
Eargle, John, and Zaida Luthey-Schulten. 'NetworkView: 3D display and analysis of protein· RNA interaction networks.' Bioinformatics 28.22 (2012): 3000-3001
Bakan, Ahmet, Lidio M. Meireles, and Ivet Bahar. 'ProDy: protein dynamics inferred from theory and experiments.' Bioinformatics 27.11 (2011): 1575-1577.
Gerek, Z. Nevin, and S. Banu Ozkan. 'Change in allosteric network affects binding affinities of PDZ domains analysis through perturbation response scanning.' PLoS computational biology 7.10 (2011).
Bahar, Ivet, et al. 'Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins.' Chemical reviews 110.3 (2010): 1463-1497.
Coste, Bertrand, et al. 'Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels.' Science 330.6000 (2010): 55-60.
Atilgan, Canan, and Ali Rana Atilgan. 'Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein.' PLoS computational biology 5.10 (2009).
Sethi, Anurag, et al. 'Dynamical networks in tRNA protein complexes.' Proceedings of the National Academy of Sciences 106.16 (2009): 6620-6625.
Ghosh, Rumi, and Kristina Lerman. 'Community detection using a measure of global influence.' International Workshop on Social Network Mining and Analysis. Springer, Berlin, Heidelberg, 2008.
Goodey, Nina M., and Stephen J. Benkovic. 'Allosteric regulation and catalysis emerge via a common route.' Nature chemical biology 4.8 (2008): 474.
Andersen, Reid, Fan Chung, and Kevin Lang. 'Local graph partitioning using pagerank vectors.' 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06). IEEE, 2006.
Grant, Barry J., et al. 'Bio3d: an R package for the comparative analysis of protein structures.' Bioinformatics 22.21 (2006): 2695-2696.
Ohtsuki, Hisashi, et al. 'A simple rule for the evolution of cooperation on graphs and social networks.' Nature 441.7092 (2006): 502-505.
Brandes, Ulrik, and Daniel Fleischer. 'Centrality measures based on current flow.' Annual symposium on theoretical aspects of computer science. Springer, Berlin, Heidelberg, 2005.
Newman, Mark EJ. 'A measure of betweenness centrality based on random walks.' Social networks 27.1 (2005): 39-54.
Atilgan, Ali Rana, et al. 'Anisotropy of fluctuation dynamics of proteins with an elastic network model.' Biophysical journal 80.1 (2001): 505-515.
Page, Lawrence, et al. The pagerank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70250-
dc.description.abstractPiezo family為存在於哺乳類動物的蛋白質家族。主要包含兩類蛋白質:Piezo1與Piezo2。該蛋白質家族為鈣離子通道蛋白,鑲嵌於於細胞膜上。當細胞膜受一定大小之張力時,Piezo1與Piezo2的arm會由彎曲狀態轉為伸直扁平的狀態,因而提供足夠張力促使鈣離子通道由關閉狀態轉為開啟狀態。此過程稱為力活化。
近年來雖已有人使用超高速原子力顯微鏡、分子動態模擬等方法提出了Piezo1的力活化機制,並在奈米(nm)層級下Piezo1的力活化機制已清楚掌握,但解析度上還不夠精確。此外,在蛋白質資料庫中,並無力活化狀態下的Piezo1與Piezo2蛋白質構型。而模擬相關文獻並不能提出一個符合自然與實驗狀態下受張力影響的完整Piezo1力活化構型。
因此,本實驗目的即為利用分子動態模擬與ANM(anisotropic normal mode)等模擬方法模擬符合實驗情形下完整的力活化狀態Piezo family結構並比較其差異。另外,我們也創立一種圖形理論相關分群演算法PIROsaction搭配PRS(perturb response simulation)來比較Piezo1與Piezo2在異位調控上的差異,並檢附PIROsaction在社群網路上的應用,包含如何搭配人工智慧做分群。
實驗結果方面,我們一再確認Piezo2的力活化比Piezo1還要來得強烈。此外,PIROsaction搭配PRS(perturb response simulation)結果方面,我們發現比單純使用PRS(perturb response simulation)更能偵測Piezo1的異位調控完整位置(THU8~THU9)。另外,綜合所有結果分析,我們得知Piezo1傾向使用末端arm(THU1~THU3)與中端arm(THU4~THU6)做劇烈伸張運動促使pore開;而Piezo2只需使用末端arm(THU1~THU3)即可促使pore開。
zh_TW
dc.description.abstractPiezo family, which is a protein family, exists in mammals. It includes two types of proteins – Piezo1 and Piezo2. It is also a type of calcium gated ion channels imbedded in cell membrane. When the force acts on cell membrane enough, the arms of Pieoz1 and Piezo2 will be changed from curve shape to flatten and stretching shape. Hence, calcium gated ion channel will open from close state to open state by arms’ stretching force. This process is called mechanogating.
In recent years, many scientists use high speed atomic force microscopy and molecular dynamics to offer the mechanism of Piezo1 mechanogating. Even though the mechanism of Piezo1 mechanogating at Nano-meter scale is well known, the resolution is not enough. Besides, the protein database has no open state proteins of Piezo1 and Piezo2. The simulation articles can’t also get the proper and nature states of activated and intact Piezo1.
Hence, the goal of our research is using molecular dynamics and ANM (anisotropic normal mode) to simulate the open state and intact proteins of Piezo family at molecular scale (Åm), which meet with experimental result. Moreover, we develop graph theory algorithm – PIROsaction, which is local partitioning algorithm, to compare the mechanogating of Piezo1 and Piezo2 with PRS (perturb response simulation) method. We also append some social network applications of PIROsaction, including how to go with Artificial intelligence.
In our result, we confirm that the mechanogating effect of Piezo2 is stronger than Piezo1. Otherwise, using PIROsaction with PRS (perturb response simulation) can determine more intact allosteric site of Piezo1 (THU8~THU9) in contrast to PRS (perturb response simulation). Besides, for all analysis, we conclude that Piezo1 prepher to use terminal arm (THU1~THU3) and middle arm (THU4~THU6) to vibrate and stretch fiercely to open the pore, but Piezo2 only need terminal arm to do so.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:24:47Z (GMT). No. of bitstreams: 1
U0001-1508202023194600.pdf: 7961416 bytes, checksum: 997d48bdbd18751e82b3d6b37351677a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章
緒論 1
1.1 背景介紹 1
1.1.1 Piezo家族蛋白質功能與結構簡介 1
1.1.2 現今模擬 Piezo家族蛋白質活化狀態之相關文獻 3
1.2 研究動機與目的 4
第二章
研究方法 5
2.1 R與 Z值之定義 6
2.2 同源建模 7
2.3 ANM (anistropic normal mode) 7
2.4 分子動態模擬 11
2.4.1 基本參數設置 12
2.4.2 Restraint設置 12
2.4.3 RMSD 13
2.4.4 RMSF 13
2.4.5 鹽橋 13
2.4.6 Cap rotation之定義 14
2.4.7 Beam angle定義 16
2.4.8 Electric potential計算 16
2.4.9 Cap domain與 IH domain之高度定義 16
2.4.10 Pore活化分析活化分析 17
2.5 PRS (perturb response simulation) 18
2.6 PIROsaction 18
第三章
第三章 結果與分析結果與分析 25
3.1 同源建模同源建模 25
3.2 ANM((anistropic normal mode)初始活化結構)初始活化結構 26
3.3 分子動態模擬分析分子動態模擬分析 30
3.3.1 RMSD與與RG圖形圖形 31
3.3.2 Piezo1與與Piezo2之之Close state結構驗證分析結構驗證分析 32
3.3.3 Piezo1與與Piezo2之之Flatten state結構驗證分析結構驗證分析 35
3.3.3 RMSF分析分析 37
3.3.4 Cap rotation分析分析 39
3.3.5 Beam angle分析分析 41
3.3.6 Pore活化分析活化分析 42
3.4 PRS (perturb response simulation)與與PIROsaction分析分析 43
第四章
第四章 結果與討論 50
Reference 51
附錄
附錄A PIROsaction於社群網路上的於社群網路上的一些應用一些應用 54
附錄B Close state與與Flatten state之結構差異性之結構差異性 57
dc.language.isozh-TW
dc.titlePiezo蛋白質家族的活化機制zh_TW
dc.titleActivated mechanisms of Piezo family proteinsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.coadvisor張書瑋(Shu-Wei Chang)
dc.contributor.oralexamcommittee周佳靚(Chia-Ching Chou)
dc.subject.keywordPiezo family,Piezo1,Piezo2,鈣離子通道蛋白,力活化,分子動態模擬,ANM,PRS,異位調控,PIROsaction,人工智慧,zh_TW
dc.subject.keywordPiezo family,Piezo1,Piezo2,calcium gated ion channel,mechanogating,molecular dynamics,ANM,PRS,PIROsaction,Artificial intelligence,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202003541
dc.rights.note有償授權
dc.date.accepted2020-12-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
U0001-1508202023194600.pdf
  Restricted Access
7.77 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved