Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70238
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳文章
dc.contributor.authorChao-Wei Huangen
dc.contributor.author黃昭維zh_TW
dc.date.accessioned2021-06-17T04:24:39Z-
dc.date.available2018-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationChapter 1
[1] M. Matsen and F. Bates, 'Block copolymer microstructures in the intermediate-segregation regime,' J. Chem. Phys., vol. 106, pp. 2436-2448, 1997.
[2] A. Semenov, 'Contribution to the theory of microphase layering in block-copolymer melts,' Zh. Eksp. Teor. Fiz, vol. 88, pp. 1242-1256, 1985.
[3] B.-J. Lin, 'Immersion lithography and its impact on semiconductor manufacturing,' J. Micro. Nanolithogr. MEMS MOEMS, vol. 3, pp. 377-501, 2004.
[4] F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, et al., 'Polymer imprint lithography with molecular-scale resolution,' Nano Lett., vol. 4, pp. 2467-2471, 2004.
[5] R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, T. R. Albrecht, et al., 'Density multiplication and improved lithography by directed block copolymer assembly,' Science, vol. 321, pp. 936-939, 2008.
[6] H. Hu, M. Gopinadhan, and C. O. Osuji, 'Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter,' Soft matter, vol. 10, pp. 3867-3889, 2014.
[7] K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, and K. Naito, 'Nano-patterning for patterned media using block-copolymer,' J. Photopolym. Sci. Technol., vol. 15, pp. 465-470, 2002.
[8] S. P. Delcambre, R. A. Riggleman, J. J. de Pablo, and P. F. Nealey, 'Mechanical properties of antiplasticized polymer nanostructures,' Soft Matter, vol. 6, pp. 2475-2483, 2010.
[9] M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, 'Block copolymer lithography: periodic arrays of~ 1011 holes in 1 square centimeter,' Science, vol. 276, pp. 1401-1404, 1997.
[10] Y. Xia and G. M. Whitesides, 'Softlithographie,' Angew. Chem., vol. 110, pp. 568-594, 1998.
[11] R. G. Lammertink, M. A. Hempenius, J. E. van den Enk, V. H. Chan, E. L. Thomas, and G. J. Vancso, 'Nanostructured thin films of organic–organometallic block copolymers: one‐step lithography with poly (ferrocenylsilanes) by reactive ion etching,' Adv. Mater., vol. 12, pp. 98-103, 2000.
[12] J. Y. Cheng, C. Ross, V. H. Chan, E. L. Thomas, R. G. Lammertink, and G. J. Vancso, 'Formation of a cobalt magnetic dot array via block copolymer lithography,' Adv. Mater., vol. 13, pp. 1174-1178, 2001.
[13] J. Y. Cheng, C. Ross, E. Thomas, H. I. Smith, and G. J. Vancso, 'Fabrication of nanostructures with long-range order using block copolymer lithography,' Appl. Phys. Lett., vol. 81, pp. 3657-3659, 2002.
[14] C. De Rosa, C. Park, B. Lotz, J.-C. Wittmann, L. J. Fetters, and E. L. Thomas, 'Control of molecular and microdomain orientation in a semicrystalline block copolymer thin film by epitaxy,' Macromolecules, vol. 33, pp. 4871-4876, 2000.
[15] T. Morkved, M. Lu, A. Urbas, E. Ehrichs, H. Jaeger, P. Mansky, et al., 'Local control of microdomain orientation in diblock copolymer thin films with electric fields,' Science, vol. 273, pp. 931-933, 1996.
[16] C.-U. Pinnow and T. Mikolajick, 'Material aspects in emerging nonvolatile memories,' J. Electrochem. Soc., vol. 151, pp. K13-K19, 2004.
[17] K. Kim, J. H. Choi, J. Choi, and H.-S. Jeong, 'The future prospect of nonvolatile memory,' in VLSI Technology, 2005.(VLSI-TSA-Tech). 2005 IEEE VLSI-TSA International Symposium on, 2005, pp. 88-94.
[18] S. Möller, C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest, 'A polymer/semiconductor write-once read-many-times memory,' Nature, vol. 426, p. 166, 2003.
[19] J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, 'Programmable polymer thin film and non-volatile memory device,' Nat. Mater., vol. 3, p. 918, 2004.
[20] Q. D. Ling, Y. Song, S. L. Lim, E. Y. H. Teo, Y. P. Tan, C. Zhu, et al., 'A Dynamic Random Access Memory Based on a Conjugated Copolymer Containing Electron‐Donor and‐Acceptor Moieties,' Angew. Chem., vol. 118, pp. 3013-3017, 2006.
[21] B. Prince, Emerging memories: technologies and trends: Springer Science & Business Media, 2002.
[22] A. Stikemann, 'Polymer Memory-The plastic path to better data storage,' Technology Review, vol. 105, pp. 31-31, 2002.
[23] R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, 'Digital memory device based on tobacco mosaic virus conjugated with nanoparticles,' Nat. Nanotechnol., vol. 1, p. 72, 2006.
[24] A. Miura, Y. Uraoka, T. Fuyuki, S. Kumagai, S. Yoshii, N. Matsukawa, et al., 'Bionanodot monolayer array fabrication for nonvolatile memory application,' Surf. Sci., vol. 601, pp. L81-L85, 2007.
[25] Z. Hua and G. Chen, 'A new material for optical, electrical and electronic thin film memories,' Vacuum, vol. 43, pp. 1019-1023, 1992.
[26] Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. Chan, D. L. Kwong, et al., 'Non‐Volatile Polymer Memory Device Based on a Novel Copolymer of N‐Vinylcarbazole and Eu‐Complexed Vinylbenzoate,' Adv. Mater., vol. 17, pp. 455-459, 2005.
[27] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, 'Polyaniline nanofiber/gold nanoparticle nonvolatile memory,' Nano Lett., vol. 5, pp. 1077-1080, 2005.
[28] Q.-D. Ling, S.-L. Lim, Y. Song, C.-X. Zhu, D. S.-H. Chan, E.-T. Kang, et al., 'Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly (n-vinylcarbazole) with covalently bonded C60,' Langmuir, vol. 23, pp. 312-319, 2007.
[29] D. Adler and E. J. Yoffa, 'Electronic structure of amorphous semiconductors,' Phys. Rev. Lett., vol. 36, p. 1197, 1976.
[30] H. S. Nalwa, Ferroelectric polymers: chemistry: physics, and applications: CRC Press, 1995.
[31] D. A. Seanor, Electrical properties of polymers: Elsevier, 2013.
[32] K. C. Kao, 'Electrical transport in solids with particular reference to organic semiconductors,' International series in the science of the Solid State, 1981.
[33] G. Dearnaley, A. Stoneham, and D. Morgan, 'Electrical phenomena in amorphous oxide films,' Rep. Prog. Phys., vol. 33, p. 1129, 1970.
[34] G. Dearnaley, D. Morgan, and A. Stoneham, 'A model for filament growth and switching in amorphous oxide films,' J. Non•Cryst. Solids, vol. 4, pp. 593-612, 1970.
[35] H. Henisch and W. Smith, 'Switching in organic polymer films,' Appl. Phys. Lett., vol. 24, pp. 589-591, 1974.
[36] Y. Segui, B. Ai, and H. Carchano, 'Switching in polystyrene films: Transition from on to off state,' J. Appl. Phys., vol. 47, pp. 140-143, 1976.
[37] H. Carchano, R. Lacoste, and Y. Segui, 'Bistable electrical switching in polymer thin films,' Appl. Phys. Lett., vol. 19, pp. 414-415, 1971.
[38] P. Sliva, G. Dir, and C. Griffiths, 'Bistable switching and memory devices,' J. Non•Cryst. Solids, vol. 2, pp. 316-333, 1970.
[39] L. Pender and R. Fleming, 'Memory switching in glow discharge polymerized thin films,' J. Appl. Phys., vol. 46, pp. 3426-3431, 1975.
[40] T. Graves-Abe and J. C. Stunn, 'Dynamics of write and erase mechanisms in a novel organic memory with extremely low ON resistance,' in 63rd Device Research Conference Digest, 2005. DRC '05., 2005, pp. 49-50.
[41] A. Wierschem, F. J. Niedernostheide, A. Gorbatyuk, and H. G. Purwins, 'Observation of current‐density filamentation in multilayer structures by EBIC measurements,' Scanning, vol. 17, pp. 106-116, 1995.
[42] W. Hwang and K. Kao, 'On the theory of filamentary double injection and electroluminescence in molecular crystals,' J. Chem. Phys., vol. 60, pp. 3845-3855, 1974.
[43] T. Kaplan and D. Adler, 'Electrothermal switching in amorphous semiconductors,' J. Non•Cryst. Solids, vol. 8-10, pp. 538-543, 1972/06/01/ 1972.
[44] J. Gazsó, 'Electrical behaviour of thin layer Au-polyethylene-Al sandwiches,' Thin Solid Films, vol. 21, pp. 43-49, 1974.
[45] H. Henisch, J. Meyers, R. Callarotti, and P. Schmidt, 'Switching in organic polymer films,' Thin Solid Films, vol. 51, pp. 265-274, 1978.
[46] Y. Sakai, Y. Sadaoka, and G. Okada, 'Switching in polystyrene and polymethyl methacrylate thin films: effect of preparation conditions of the polymers,' J. Mater. Sci., vol. 19, pp. 1333-1338, 1984.
[47] J. A. Meyers, 'Switching in polyacrylonitrile,' J. Non•Cryst. Solids, vol. 79, pp. 57-74, 1986.
[48] D. M. Taylor, 'Space charges and traps in polymer electronics,' IEEE Trans. Dielectr. Electr. Insul., vol. 13, pp. 1063-1073, 2006.
[49] Y. Sadaoka and Y. Sakai, 'Switching in poly(N-vinylcarbazole) thin films,' J. Chem. Soc., Faraday Trans. 2, vol. 72, pp. 1911-1915, 1976.
[50] G. R. Newkome, Advances in Dendritic Macromolecules vol. 5. Oxford, UK: Elvevier, 2002.
[51] C. J. Hawker, P. J. Farrington, M. E. Mackay, K. L. Wooley, and J. M. Frechet, 'Molecular ball bearings: the unusual melt viscosity behavior of dendritic macromolecules,' J. Am. Chem. Soc., vol. 117, pp. 4409-4410, 1995.
[52] P. J. Farrington, C. J. Hawker, J. M. Fréchet, and M. E. Mackay, 'The melt viscosity of dendritic poly (benzyl ether) macromolecules,' Macromolecules, vol. 31, pp. 5043-5050, 1998.
[53] G. R. Newkome, J. K. Young, G. R. Baker, R. L. Potter, L. Audoly, D. Cooper, et al., 'Cascade polymers. 35. pH dependence of hydrodynamic radii of acid-terminated dendrimers,' Macromolecules, vol. 26, pp. 2394-2396, 1993.
[54] J. K. Young, G. R. Baker, G. R. Newkome, K. F. Morris, and C. S. Johnson Jr, '' Smart' Cascade Polymers. Modular Syntheses of Four-Directional Dendritic Macromolecules with Acidic, Neutral, or Basic Terminal Groups and the Effect of pH Changes on Their Hydrodynamic Radii,' Macromolecules, vol. 27, pp. 3464-3471, 1994.
[55] K. Wooley, C. Hawker, J. Pochan, and J. Frechet, 'Physical properties of dendritic macromolecules: a study of glass transition temperature,' Macromolecules, vol. 26, pp. 1514-1519, 1993.
[56] Y. H. Kim and O. W. Webster, 'Hyperbranched polyphenylenes,' Macromolecules, vol. 25, pp. 5561-5572, 1992.
Chapter 2
[1] D. Adler, 'Amorphous semiconductors,' Crit. Rev. Solid State Mater. Sci., vol. 2, pp. 317-465, 1971.
[2] Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, 'Polymer electronic memories: Materials, devices and mechanisms,' Prog. Polym. Sci., vol. 33, pp. 917-978, 2008/10/01/ 2008.
[3] L. Bozano, B. Kean, V. Deline, J. Salem, and J. Scott, 'Mechanism for bistability in organic memory elements,' Appl. Phys. Lett., vol. 84, pp. 607-609, 2004.
[4] L. Ma, J. Liu, and Y. Yang, 'Organic electrical bistable devices and rewritable memory cells,' Appl. Phys. Lett., vol. 80, pp. 2997-2999, 2002.
[5] L. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, 'Nonvolatile electrical bistability of organic/metal-nanocluster/organic system,' Appl. Phys. Lett., vol. 82, pp. 1419-1421, 2003.
[6] J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, 'Programmable polymer thin film and non-volatile memory device,' Nat. Mater., vol. 3, p. 918, 2004.
[7] C.-U. Pinnow and T. Mikolajick, 'Material aspects in emerging nonvolatile memories,' J. Electrochem. Soc., vol. 151, pp. K13-K19, 2004.
[8] K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, 'Controllable shifts in threshold voltage of top‐gate polymer field‐effect transistors for applications in organic nano floating gate memory,' Adv. Funct. Mater., vol. 20, pp. 224-230, 2010.
[9] M. Kang, K. J. Baeg, D. Khim, Y. Y. Noh, and D. Y. Kim, 'Printed, flexible, organic nano‐floating‐gate memory: Effects of metal nanoparticles and blocking dielectrics on memory characteristics,' Adv. Funct. Mater., vol. 23, pp. 3503-3512, 2013.
[10] Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido, and J. J. Watkins, 'Additive-driven assembly of block copolymer–nanoparticle hybrid materials for solution processable floating gate memory,' ACS nano, vol. 6, pp. 1188-1194, 2012.
[11] M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voïtchovsky, F. Stellacci, et al., 'Concept of a Molecular Charge Storage Dielectric Layer for Organic Thin‐Film Memory Transistors,' Adv. Mater., vol. 22, pp. 2525-2528, 2010.
[12] Z.-Z. Du, W. Li, W. Ai, Q. Tai, L.-H. Xie, Y. Cao, et al., 'Chemoselective reduction of graphene oxide and its application in nonvolatile organic transistor memory devices,' RSC Advances, vol. 3, pp. 25788-25791, 2013.
[13] F. Bates and G. Fredrickson, 'PHYS TODAY,' Phys. Today, vol. 52, p. 32, 1999.
[14] M. Changez, N. G. Kang, C. H. Lee, and J. S. Lee, 'Reversible and pH‐Sensitive Vesicles from Amphiphilic Homopolymer Poly (2‐(4‐vinylphenyl) pyridine),' Small, vol. 6, pp. 63-68, 2010.
[15] I. W. Hamley and I. W. Hamley, The physics of block copolymers vol. 19: Oxford University Press New York, 1998.
[16] F. S. Bates and G. H. Fredrickson, 'Block copolymer thermodynamics: theory and experiment,' Annu. Rev. Phys. Chem., vol. 41, pp. 525-557, 1990.
[17] J. D. Cushen, I. Otsuka, C. M. Bates, S. Halila, S. Fort, C. Rochas, et al., 'Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications,' ACS nano, vol. 6, pp. 3424-3433, 2012.
[18] I. Otsuka, S. Tallegas, Y. Sakai, C. Rochas, S. Halila, S. Fort, et al., 'Control of 10 nm scale cylinder orientation in self-organized sugar-based block copolymer thin films,' Nanoscale, vol. 5, pp. 2637-2641, 2013.
[19] Y. C. Chiu, I. Otsuka, S. Halila, R. Borsali, and W. C. Chen, 'High‐Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar‐based Block Copolymers and Their Supramolecules,' Adv. Funct. Mater., vol. 24, pp. 4240-4249, 2014.
[20] C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, et al., 'Conception of Stretchable Resistive Memory Devices Based on Nanostructure‐Controlled Carbohydrate‐block‐Polyisoprene Block Copolymers,' Adv. Funct. Mater., 2017.
[21] I. Otsuka, K. Fuchise, S. Halila, S. Fort, K. Aissou, I. Pignot-Paintrand, et al., 'Thermoresponsive vesicular morphologies obtained by self-assemblies of hybrid oligosaccharide-block-poly (N-isopropylacrylamide) copolymer systems,' Langmuir, vol. 26, pp. 2325-2332, 2009.
[22] I. Otsuka, Y. Zhang, T. Isono, C. Rochas, T. Kakuchi, T. Satoh, et al., 'Sub-10 nm scale nanostructures in self-organized linear di-and triblock copolymers and miktoarm star copolymers consisting of maltoheptaose and polystyrene,' Macromolecules, vol. 48, pp. 1509-1517, 2015.
Chapter 3
[1] K. Kim, Y. Y. Kim, S. Park, Y.-G. Ko, Y. Rho, W. Kwon, et al., 'Nanostructure-and orientation-controlled digital memory behaviors of linear-brush diblock copolymers in nanoscale thin films,' Macromolecules, vol. 47, pp. 4397-4407, 2014.
[2] H.-C. Wu, C.-L. Liu, and W.-C. Chen, 'Donor–acceptor conjugated polymers of arylene vinylene with pendent phenanthro [9, 10-d] imidazole for high-performance flexible resistor-type memory applications,' Polym. Chem., vol. 4, pp. 5261-5269, 2013.
[3] L.-H. Xie, Q.-D. Ling, X.-Y. Hou, and W. Huang, 'An effective friedel− crafts postfunctionalization of Poly (N-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based on π-stacked polymers for nonvolatile flash memory cell,' J. Am. Chem. Soc., vol. 130, pp. 2120-2121, 2008.
[4] S. J. Liu, Z. H. Lin, Q. Zhao, Y. Ma, H. F. Shi, M. D. Yi, et al., 'Flash‐Memory Effect for Polyfluorenes with On‐Chain Iridium (III) Complexes,' Adv. Funct. Mater., vol. 21, pp. 979-985, 2011.
[5] H.-C. Wu, A.-D. Yu, W.-Y. Lee, C.-L. Liu, and W.-C. Chen, 'A poly (fluorene-thiophene) donor with a tethered phenanthro [9, 10-d] imidazole acceptor for flexible nonvolatile flash resistive memory devices,' Chem. Commun., vol. 48, pp. 9135-9137, 2012.
[6] Y. C. Chiu, I. Otsuka, S. Halila, R. Borsali, and W. C. Chen, 'High‐Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar‐based Block Copolymers and Their Supramolecules,' Adv. Funct. Mater., vol. 24, pp. 4240-4249, 2014.
[7] Y. C. Chiu, H. S. Sun, W. Y. Lee, S. Halila, R. Borsali, and W. C. Chen, 'Oligosaccharide Carbohydrate Dielectrics toward High‐Performance Non‐volatile Transistor Memory Devices,' Adv. Mater., vol. 27, pp. 6257-6264, 2015.
[8] C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, et al., 'Conception of Stretchable Resistive Memory Devices Based on Nanostructure‐Controlled Carbohydrate‐block‐Polyisoprene Block Copolymers,' Adv. Funct. Mater., 2017.
Chapter 4
[1] B. Park, P. Paoprasert, I. In, J. Zwickey, P. E. Colavita, R. J. Hamers, et al., 'Functional Self‐Assembled Monolayers for Optimized Photoinduced Charge Transfer in Organic Field Effect Transistors,' Adv. Mater., vol. 19, pp. 4353-4357, 2007.
[2] Y. Guo, C. a. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, et al., 'Multibit Storage of Organic Thin‐Film Field‐Effect Transistors,' Adv. Mater., vol. 21, pp. 1954-1959, 2009.
[3] Y.-C. Chiu, C.-L. Liu, W.-Y. Lee, Y. Chen, T. Kakuchi, and W.-C. Chen, 'Multilevel nonvolatile transistor memories using a star-shaped poly ((4-diphenylamino) benzyl methacrylate) gate electret,' NPG Asia Mater., vol. 5, p. e35, 2013.
[4] Y. C. Chiu, I. Otsuka, S. Halila, R. Borsali, and W. C. Chen, 'High‐Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar‐based Block Copolymers and Their Supramolecules,' Adv. Funct. Mater., vol. 24, pp. 4240-4249, 2014.
Chapter 5
[1] Y. Liao, W. C. Chen, and R. Borsali, 'Carbohydrate‐Based Block Copolymer Thin Films: Ultrafast Nano‐Organization with 7 nm Resolution Using Microwave Energy,' Adv. Mater., vol. 29, p. 1701645, 2017.
Appendix A
[1] C. Collier, E. Wong, M. Belohradský, F. Raymo, J. Stoddart, P. Kuekes, et al., 'Electronically configurable molecular-based logic gates,' Science, vol. 285, pp. 391-394, 1999.
[2] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, et al., 'A 160-kilobit molecular electronic memory patterned at 10 11 bits per square centimetre,' Nature, vol. 445, p. 414, 2007.
[3] Z. Donhauser, B. Mantooth, K. Kelly, L. Bumm, J. Monnell, J. Stapleton, et al., 'Conductance switching in single molecules through conformational changes,' Science, vol. 292, pp. 2303-2307, 2001.
[4] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, 'Carbon nanotube-based nonvolatile random access memory for molecular computing,' science, vol. 289, pp. 94-97, 2000.
[5] Y. Shang, Y. Wen, S. Li, S. Du, X. He, L. Cai, et al., 'A triphenylamine-containing donor− acceptor molecule for stable, reversible, ultrahigh density data storage,' J. Am. Chem. Soc., vol. 129, pp. 11674-11675, 2007.
[6] M. Nakaya, Y. Kuwahara, M. Aono, and T. Nakayama, 'Reversibility‐Controlled Single Molecular Level Chemical Reaction in a C60 Monolayer via Ionization Induced by Scanning Transmission Microscopy,' Small, vol. 4, pp. 538-541, 2008.
[7] M. Nakaya, S. Tsukamoto, Y. Kuwahara, M. Aono, and T. Nakayama, 'Molecular scale control of unbound and bound C60 for topochemical ultradense data storage in an ultrathin C60 film,' Adv. Mater., vol. 22, pp. 1622-1625, 2010.
[8] M. Nakaya, M. Aono, and T. Nakayama, 'Molecular-scale size tuning of covalently bound assembly of C60 molecules,' ACS nano, vol. 5, pp. 7830-7837, 2011.
[9] M. Nakaya, Y. Kuwahara, M. Aono, and T. Nakayama, 'Nanoscale control of reversible chemical reaction between fullerene C60 molecules using scanning tunneling microscope,' J. Nanosci. Nanotechnol., vol. 11, pp. 2829-2835, 2011.
[10] T. Takahashi and S. Nakatani, 'Refinement of the Si (111) 3× 3-Ag structure by surface X-ray diffraction,' Surf. Sci., vol. 282, pp. 17-32, 1993.
[11] S. Pekker, L. Forró, L. Mihaly, and A. Janossy, 'Orthorhombic A1C60: a conducting linear alkali fulleride polymer?,' Solid State Commun., vol. 90, pp. 349-352, 1994.
[12] Y. Nakamura, Y. Mera, and K. Maeda, 'In situ scanning tunneling microscopic study of polymerization of C 60 clusters induced by electron injection from the probe tips,' Appl. Phys. Lett., vol. 77, pp. 2834-2836, 2000.
[13] R. Nouchi, K. Masunari, T. Ohta, Y. Kubozono, and Y. Iwasa, 'Ring of c 60 polymers formed by electron or hole injection from a scanning tunneling microscope tip,' Phys. Rev. Lett., vol. 97, p. 196101, 2006.
[14] G.-W. Wang, K. Komatsu, Y. Murata, and M. Shiro, 'Synthesis and X-ray structure of dumb-bell-shaped C 120,' Nature, vol. 387, p. 583, 1997.
[15] J.-Y. Cheng, B. L. Fisher, N. P. Guisinger, and C. M. Lilley, 'Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance,' npj Quantum Mater., vol. 2, p. 25, 2017.
[16] K. L. Akers, C. Douketis, T. L. Haslett, and M. Moskovits, 'Raman spectroscopy of C60 solid films: a tale of two spectra,' J. Phys. Chem., vol. 98, pp. 10824-10831, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70238-
dc.description.abstract隨著無機電子元件在製程技術和研究上趨於飽和,高分子材料於各種原件上的應用逐漸蓬勃,包括有機半導體、發光顯示器、記憶體等,引發廣泛的討論與研究,其中又以能夠自組裝的嵌段共聚高分子最引各界注目。嵌段共聚高分子擁有極大的功能性設計自由,又可以利用簡易例如加熱或暴露於高溶劑蒸氣壓等的方式控制其自組裝的奈米結構,為未來的元件架構以及型態帶來很大的可造空間。
此論文探討嵌段共聚高分子MH-b-PS薄膜的各種可能為結構及型態。此研究中所利用的MH-b-PS結構除了較常見的線性結構外,還包括了三隻手臂以及六隻手臂的星狀結構。除了分子結構本身對得到各種薄膜中奈米結構的製程影響外,其對基於此MH-b-PS嵌段共聚高分子所組成的記憶體元件表現是此研究的重點。麥芽七糖MH寡聚物鏈段是構成電子傳導路徑的主要成分,而MH鏈段在PS中的結構以及向性,對記憶體元件的表現具有極大的影響力,勝制可以在相同材料架構下創造出不同的記憶體的表現。根據文獻,當使用純的麥芽七糖作為電子捕捉層時,電阻式記憶體的表現屬於一次寫入多次讀取式記憶體,而當嵌段共聚高分子中麥芽七糖的微結構呈現隨機排列的球、直立的柱或水平的柱狀結構時,記憶體的表現將為隨機存取式記憶體、一次寫入多次讀取式記憶體或快閃式記憶體。在此研究中發現,除了麥芽七糖的微結構外,高分子本身的構造也對溶劑退火條件及過程和元件表現有影響,尤其是擁有直立柱狀為結構的電阻式記憶體元件,隨著高分子手臂數的增加,元件的記憶體揮發性也會跟著升高。此外,當使用這系列的嵌段共聚高分子製作電晶體式記憶體元件,元件的記憶窗口也會受麥芽七糖微結構以及高分子構造顯著的影響。
zh_TW
dc.description.abstractAs physical limitations in modern day inorganic electronic devices becomes more prominent, much research effort has been put into seeking new material alternatives, one of the rising stars being polymers. With mechanical and optical properties that are desirable in future mobile devices and the near unlimited possibility in rational molecular design, polymer provides a versatility that is unique to its nature. Therefore, this thesis mainly focuses on incorporating polymer materials into memory devices and studies how the molecular architecture and thin film nanostructure can impact the manifestation of memory behaviors.
The memory behaviors of green electrets-based organic resistive memory devices with respect to molecular architectures and film morphologies were reported. Using the block copolymer maltoheptaose-block-polystyrene (MH-b-PS) of linear, 3-arm star, and 6-arm star architectures, the hydrophilic MH sugar moiety served as the electron-trapping component while the hydrophilic polystyrene served as the tunneling matrix. By changing the component of the co-solvent used and exposure time for solvent annealing, one can rearrange the distribution of the MH domains and create different morphologies and orientations, including random spheres, vertical cylinders, and horizontal cylinders.. Bulk pure MH films have been reported to exhibit WORM behaviors when fabricated into resistive-type memory devices. However, when the MH domains in the block copolymer adopts the morphologies of random spheres, vertical cylinders, or horizontal cylinders, the device can demonstrate memory behaviors of DRAM, WORM, and flash for the linear block copolymers respectively. It has also been observed that each molecular architectures responded differently to the solvent annealing treatments in terms of obtainable nanostructures and the manifestation of memory behaviors, especially for the resistive-type memory devices with vertical cylindrical MH morphology, where the volatility of the memory was affected by the number of arms in the polymer. Furthermore, when using the block copolymers to fabricate transistor-type memories, the memory window of the devices could be manipulated by controlling the morphology of the MH nanodomains and using different molecular architectures to change the MH exposure at the polymer-pentacene interface.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:24:39Z (GMT). No. of bitstreams: 1
ntu-107-R05524058-1.pdf: 4817916 bytes, checksum: a95522f4ea4e0814fb265e5aeb8efcbe (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAcknowledgement I
Abstract III
摘要 V
Table of Contents VII
Table Captions XI
Figure Captions XII
Chapter 1 Introduction 1
1.1 Introduction to Block Copolymers 1
1.1.1 Self-Assembly of Block Copolymers 2
1.1.2 Block Copolymers in Material Nanofabrication Application 4
1.2 Introduction to Organic Memory 7
1.2.1 Classification of Organic Memory 8
1.2.2 Resistive-Type Polymer Memory 10
1.2.3 Conduction Mechanisms in Resistive-Type Polymer Memory 12
1.2.3.1 Filamentary Conduction Theory 13
1.2.3.2 Space Charges and Traps Theory 14
1.3 Introduction to Star Polymers 15
1.4 Research Objectives 17
Tables and Figures 20
References 24
Chapter 2 Morphology Control and Characterization of MH-b-PS Thin Films 32
2.1 Introduction 32
2.2 Experimental Section 34
2.2.1 Materials Preparation and Characterization 34
2.2.1.1 Materials 34
2.2.1.2 Instruments for Material Characterization and Analyses 35
2.2.1.3 Synthesis of azido-terminated polystyrene (PS3k-N3)n 36
2.2.1.4 Synthesis of maltoheptaose-block-polystyrene (MH1.2k-b-PS3k)n by click-chemistry 38
2.2.2 Preparation of Thin Films and Solvent Annealing 39
2.2.3 Characterization 40
2.3 Results and Discussions 41
2.4 Conclusions 45
Tables and Figures 47
References 58
Chapter 3 MH-b-PS of Different Architectures in Resistive Memory 62
3.1 Introduction 62
3.2 Experimental Section 62
3.2.1 Resistive Memory Device Fabrication 62
3.2.2 Resistive Memory Device Measurement 63
3.3 Results and Discussions 64
3.3.1 Mechanism for Morphology-Based Memory Behavior 66
3.4 Conclusions 68
Tables and Figures 70
References 74
Chapter 4 MH-b-PS of Different Architectures in Transistor Memory 76
4.1 Introduction 76
4.2 Experimental Section 77
4.2.1 Transistor Memory Device Fabrication 77
4.2.2 Transistor Memory Device Measurement 78
4.3 Results and Discussions 78
4.3.1 Mechanism for Difference in Memory Windows 80
4.4 Conclusions 82
Tables and Figures 84
References 87
Chapter 5 Conclusions and Future Prospects 88
References 91
Appendix A. Scanning Tunneling Microscope Facilitated Ultra-High-Density Reversible Fullerene Memory 92
dc.language.isoen
dc.subject星狀高分子zh_TW
dc.subject嵌段共聚高分子zh_TW
dc.subject醣類zh_TW
dc.subject記憶體元件zh_TW
dc.subject高分子型態zh_TW
dc.subjectstar polymeren
dc.subjectblock copolymeren
dc.subjectcarbohydrateen
dc.subjectmemory deviceen
dc.subjectmorphologyen
dc.title線性及星狀寡糖嵌段共聚高分子電阻式記憶體之研究zh_TW
dc.titleInvestigation of Resistive Memory Devices Based on Linear and Star Shaped Oligosaccharide Block Copolymersen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文亞,童世煌,闕居振
dc.subject.keyword星狀高分子,嵌段共聚高分子,醣類,記憶體元件,高分子型態,zh_TW
dc.subject.keywordstar polymer,block copolymer,carbohydrate,memory device,morphology,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201803407
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
4.7 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved