Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁(Li-Jen Chen)
dc.contributor.authorLiang-Kai Chuen
dc.contributor.author朱亮愷zh_TW
dc.date.accessioned2021-06-17T04:24:38Z-
dc.date.available2023-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation1. Davy, H., On a Combination of Oxymuriatic Gas and Oxygene Gas. Philosophical Transactions of the Royal Society of London, 1811. 101 155-162.
2. Sloan, E.D. and C. Koh, Clathrate Hydrates of Natural Gases. Third Edition ed. Chemical Industries. 2007: CRC Press, Boca Raton.
3. Lubert-Martin, M., M. Darbouret, and J.-M. Herri. Rheological study of two-phase secondary fluids for refrigeration and air conditioning. in 9e congrès de la SFGP. 'Du rayonnement scientifique à la diffusion des technologies'. 2003. Saint-Nazaire, France.
4. Sloan, E.D., Fundamental Principles and Applications of Natural Gas Hydrates. Nature, 2003. 426 (6964): pp. 353-359.
5. Nakamura, T., T. Makino, T. Sugahara, and K. Ohgaki, Stability Boundaries of Gas Hydrates Helped by Methane-structure-H Hydrates of Methylcyclohexane and Cis-1,2-dimethylcyclohexane. Chemical Engineering Science, 2003. 58 (2): pp. 269-273.
6. Nakano, S., M. Moritoki, and K. Ohgaki, High-pressure Phase Equilibrium and Raman Microprobe Spectroscopic Studies on the Methane Hydrate System. Journal of Chemical and Engineering Data, 1999. 44 (2): pp. 254-257.
7. Makogon, T.Y. and E.D. Sloan, Phase Equilibrium for Methane Hydrate from 190 to 262 K. Journal of Chemical and Engineering Data, 1994. 39 (2): pp. 351-353.
8. Jin, Y., K. Matsumoto, J. Nagao, and W. Shimada, Phase Equilibrium Conditions for Krypton Clathrate Hydrate below the Freezing Point of Water. Journal of Chemical & Engineering Data, 2011. 56 (1): pp. 58-61.
9. Nagashima, H.D. and R. Ohmura, Phase Equilibrium Condition Measurements in Methane Clathrate Hydrate Forming System from 197.3K to 238.7K. The Journal of Chemical Thermodynamics, 2016. 102 (Supplement C): pp. 252-256.
10. Gupta, A., J. Lachance, E.D. Sloan, and C.A. Koh, Measurements of Methane Hydrate Heat of Dissociation Using High Pressure Differential Scanning Calorimetry. Chemical Engineering Science, 2008. 63 (24): pp. 5848-5853.
11. Melnikov, V.P., A.N. Nesterov, A.M. Reshetnikov, and A.G. Zavodovsky, Evidence of Liquid Water Formation During Methane Hydrates Dissociation below the Ice Point. Chemical Engineering Science, 2009. 64 (6): pp. 1160-1166.
12. Mooijer-van den Heuvel, M.M., R. Witteman, and C.J. Peters, Phase Behaviour of Gas Hydrates of Carbon Dioxide in the Presence of Tetrahydropyran, Cyclobutanone, Cyclohexane and Methylcyclohexane. Fluid Phase Equilibria, 2001. 182 (1-2): pp. 97-110.
13. Mohammadi, A.H. and D. Richon, Ice–Clathrate Hydrate–Gas Phase Equilibria for Argon + Water and Carbon Dioxide + Water Systems. Industrial & Engineering Chemistry Research, 2011. 50 (19): pp. 11452-11454.
14. Wendland, M., H. Hasse, and G. Maurer, Experimental Pressure−Temperature Data on Three- and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxide−Water. Journal of Chemical & Engineering Data, 1999. 44 (5): pp. 901-906.
15. Fan, S.-S. and T.-M. Guo, Hydrate Formation of CO2-Rich Binary and Quaternary Gas Mixtures in Aqueous Sodium Chloride Solutions. Journal of Chemical & Engineering Data, 1999. 44 (4): pp. 829-832.
16. Delahaye, A., L. Fournaison, S. Marinhas, I. Chatti, J.-P. Petitet, D. Dalmazzone, and W. Fürst, Effect of THF on Equilibrium Pressure and Dissociation Enthalpy of CO2 Hydrates Applied to Secondary Refrigeration. Industrial & Engineering Chemistry Research, 2006. 45 (1): pp. 391-397.
17. Dyadin, Y.A., E.G. Larionov, D.S. Mirinskij, T.V. Mikina, E.Y. Aladko, and L.I. Starostina, Phase Diagram of the Xe–H2O System up to 15 kbar. Journal of inclusion phenomena and molecular recognition in chemistry, 1997. 28 (4): pp. 271-285.
18. Ohgaki, K., T. Sugahara, M. Suzuki, and H. Jindai, Phase Behavior of Xenon Hydrate System. Fluid Phase Equilibria, 2000. 175 (1): pp. 1-6.
19. Marboeuf, U., N. Fray, O. Brissaud, B. Schmitt, D. Bockelée-Morvan, and D. Gautier, Equilibrium Pressure of Ethane, Acetylene, and Krypton Clathrate Hydrates below the Freezing Point of Water. Journal of Chemical & Engineering Data, 2012. 57 (12): pp. 3408-3415.
20. Mooijer-van den Heuvel, M.M., C.J. Peters, and J.D. Arons, Gas Hydrate Phase Equilibria for Propane in the Presence of Additive Components. Fluid Phase Equilibria, 2002. 193 (1-2): pp. 245-259.
21. Babaee, S., H. Hashemi, A.H. Mohammadi, P. Naidoo, and D. Ramjugernath, Experimental Measurement and Thermodynamic Modeling of Hydrate Dissociation Conditions for the Argon + TBAB + Water System. Journal of Chemical & Engineering Data, 2014. 59 (11): pp. 3900-3906.
22. Babaee, S., H. Hashemi, A.H. Mohammadi, P. Naidoo, and D. Ramjugernath, Experimental Measurement and Thermodynamic Modelling of Hydrate Phase Equilibrium Conditions for Krypton+N-butyl Ammonium Bromide Aqueous Solution. The Journal of Supercritical Fluids, 2016. 107 (Supplement C): pp. 676-681.
23. Juan, Y.-W., M. Tang, L.-J. Chen, S.-T. Lin, P.-C. Chen, and Y.-P. Chen, Measurements for the Equilibrium Conditions of Methane Hydrate in the Presence of Cyclopentanone or 4-hydroxy-4-methyl-2-pentanone Additives. Fluid Phase Equilibra, 2015. 386 (285): pp. 162-167.
24. Mooijer-van den Heuvel, M.M., C.J. Peters, and J.D. Arons, Influence of Water-insoluble Organic Components on the Gas Hydrate Equilibrium Conditions of Methane. Fluid Phase Equilibria, 2000. 172 (1): pp. 73-91.
25. Mohammadi, A.H. and D. Richon, Phase Equilibria of Clathrate Hydrates of Tetrahydrofuran Plus Hydrogen Sulfide and Tetrahydrofuran Plus Methane. Ind. Eng. Chem. Res., 2009. 48 (16): pp. 7838-7841.
26. Seo, Y., S.-P. Kang, S. Lee, and H. Lee, Experimental Measurements of Hydrate Phase Equilibria for Carbon Dioxide in the Presence of THF, Propylene Oxide, and 1,4-Dioxane. Journal of Chemical & Engineering Data, 2008. 53 (12): pp. 2833-2837.
27. Torre, J.P., D. Haillot, S. Rigal, R.D. Lima, C. Dicharry, and J.P. Bedecarrats, 1,3 Dioxolane versus Tetrahydrofuran as Promoters for CO2-Hydrate Formation: Thermodynamics Properties, and Kinetics in Presence of Sodium Dodecyl Sulfate. Chemical Engineering Science, 2015. 126 688-697.
28. Mohammadi, A.H. and D. Richon, Phase Equilibria of Clathrate Hydrates of Methyl Cyclopentane, Methyl Cyclohexane, Cyclopentane or Cyclohexane Plus Carbon Dioxide. Chemical Engineering Science, 2009. 64 (24): pp. 5319-5322.
29. Anderson, R., A. Chapoy, and B. Tohidi, Phase Relations and Binary Clathrate Hydrate Formation in the System H2-THF-H2O. Langmuir, 2007. 23 (6): pp. 3440-3444.
30. Larionov, É.G., F.V. Zhurko, and Y.A. Dyadin, Gas‐Hydrate Packing and Stability at High Pressures. Journal of Structural Chemistry, 2002. 43 (6): pp. 985-989.
31. Takeya, S. and R. Ohmura, Phase Equilibrium for Structure II Hydrates Formed with Krypton Co-existing with Cyclopentane, Cyclopentene, or Tetrahydropyran. Journal of Chemical & Engineering Data, 2006. 51 (5): pp. 1880-1883.
32. Yang, H., S. Fan, X. Lang, and Y. Wang, Phase Equilibria of Mixed Gas Hydrates of Oxygen + Tetrahydrofuran, Nitrogen + Tetrahydrofuran, and Air + Tetrahydrofuran. Journal of Chemical & Engineering Data, 2011. 56 (11): pp. 4152-4156.
33. Makino, T., T. Sugahara, and K. Ohgaki, Stability Boundaries of Tetrahydrofuran + Water System. Journal of Chemical & Engineering Data, 2005. 50 (6): pp. 2058-2060.
34. Manakov, A.Y., S.V. Goryainov, A.V. Kurnosov, A.Y. Likhacheva, Y.A. Dyadin, and E.G. Larionov, Clathrate Nature of the High-pressure Tetrahydrofuran Hydrate Phase and Some New Data on the Phase Diagram of the Tetrahydrofuran-Water System at Pressures Up to 3 GPa. Journal of Physical Chemistry B, 2003. 107 (31): pp. 7861-7866.
35. Mohammadi, A.H. and D. Richon, Clathrate Hydrate Dissociation Conditions for the Methane Plus Cycloheptane/Cyclooctane Plus Water and Carbon Dioxide Plus Cycloheptane/Cyclooctane Plus Water Systems. Chemical Engineering Science, 2010. 65 (10): pp. 3356-3361.
36. Mohammadi, A. and D. Richon, Clathrate Hydrates of Isopentane + Carbon Dioxide and Isopentane + Methane: Experimental Measurements of Dissociation Conditions. Oil Gas Science and Technology, 2010. 65 (6): pp. 879-882.
37. Larionov, É.G., E.Y. Aladko, F.V. Zhurko, A.Y. Likhacheva, A.I. Ancharov, M.A. Sheromov, A.V. Kurnosov, A.Y. Manakov, and S.V. Goryainov, Clathrate Hydrates of Hexagonal Structure III at High Pressures: Structures and Phase Diagrams. Journal of Structural Chemistry, 2005. 46 (1): pp. S58-S64.
38. Shin, W., S. Park, D.-Y. Koh, J. Seol, H. Ro, and H. Lee, Water-Soluble Structure H Clathrate Hydrate Formers. The Journal of Physical Chemistry C, 2011. 115 (38): pp. 18885-18889.
39. Tezuka, K., R. Shen, T. Watanabe, S. Takeya, S. Alavi, J.A. Ripmeester, and R. Ohmura, Synthesis and Characterization of a Structure H Hydrate Formed with Carbon Dioxide and 3,3-dimethyl-2-butanone. Chemical Communications, 2013. 49 (5): pp. 505-507.
40. Shen, R., K. Tezuka, T. Uchida, and R. Ohmura, Hydrate Phase Equilibrium in the System of (Carbon Dioxide+2,2-dimethylbutane+Water) at Temperatures below Freezing Point of Water. The Journal of Chemical Thermodynamics, 2012. 53 27-29.
41. Ohfuka, Y., N. Fukushima, Z. Chen, M. Fukuda, S. Takeya, and R. Ohmura, Phase Equilibria for Kr Hdrate Formed with 2,2-dimethylbutane, Methylcyclohexane and 1-methylpiperidine. The Journal of Chemical Thermodynamics, 2018. 117 (Supplement C): pp. 21-26.
42. Kwon, T.-H., T.J. Kneafsey, and E.V.L. Rees, Thermal Dissociation Behavior and Dissociation Enthalpies of Methane–Carbon Dioxide Mixed Hydrates. The Journal of Physical Chemistry B, 2011. 115 (25): pp. 8169-8175.
43. Skovborg, P. and P. Rasmussen, Comments on: Hydrate Dissociation Enthalpy and Guest Size. Fluid Phase Equilibria, 1994. 96 (Supplement C): pp. 223-231.
44. Smith, C., A. Barifcani, and D. Pack, Helium Substitution of Natural Gas Hydrocarbons in the Analysis of Their Hydrate. Journal of Natural Gas Science and Engineering, 2016. 35 (Part A): pp. 1293-1300.
45. Anderson, G.K., Enthalpy of Dissociation and Hydration Number of Methane Hydrate from the Clapeyron Equation. The Journal of Chemical Thermodynamics, 2004. 36 (12): pp. 1119-1127.
46. Sloan, E.D. and F. Fleyfel, Hydrate Dissociation Enthalpy and Guest Size. Fluid Phase Equilibria, 1992. 76 123-140.
47. Sarshar, M., J. Fathikaljahi, and F. Esmailzadeh, Developing Correlations for Calculating Dissociation Enthalpies of Simple and Mixed Hydrates. Iranian Journal of Science & Technology, Transaction B, Engineering, 2009. 33 (B3): pp. 279-284.
48. Yoon, J.H., Y. Yamamoto, T. Komai, H. Haneda, and T. Kawamura, Rigorous Approach to the Prediction of the Heat of Dissociation of Gas Hydrates. Industrial & Engineering Chemistry Research, 2003. 42 (5): pp. 1111-1114.
49. Anderson, G.K., Enthalpy of Dissociation and Hydration Number of Carbon Dioxide Hydrate from the Clapeyron Equation. The Journal of Chemical Thermodynamics, 2003. 35 (7): pp. 1171-1183.
50. Fournaison, L., A. Delahaye, I. Chatti, and J.-P. Petitet, CO2 Hydrates in Refrigeration Processes. Industrial & Engineering Chemistry Research, 2004. 43 (20): pp. 6521-6526.
51. Bozzo, A.T., C. Hsiao-Sheng, J.R. Kass, and A.J. Barduhn, The Properties of the Hydrates of Chlorine and Carbon Dioxide. Desalination, 1975. 16 (3): pp. 303-320.
52. Sabil, K.M., G.-J. Witkamp, and C.J. Peters, Estimations of Enthalpies of Dissociation of Simple and Mixed Carbon Dioxide Hydrates from Phase Equilibrium Data. Fluid Phase Equilibria, 2010. 290 (1): pp. 109-114.
53. Lv, Q.-N., X.-S. Li, Z.-Y. Chen, and J.-C. Feng, Phase Equilibrium and Dissociation Enthalpies for Hydrates of Various Water-Insoluble Organic Promoters with Methane. Journal of Chemical & Engineering Data, 2013. 58 (11): pp. 3249-3253.
54. Jin, Y., M. Kida, and J. Nagao, Structural Characterization of Structure H (sH) Clathrate Hydrates Enclosing Nitrogen and 2,2-Dimethylbutane. The Journal of Physical Chemistry C, 2015. 119 (17): pp. 9069-9075.
55. Handa, Y.P., Compositions, Enthalpies of Dissociation, and Heat-Capacities in the Range 85-K to 270-K for Clathrate Hydrates of Methane, Ethane, and Propane, and Enthalpy of Dissociation of Isobutane Hydrate, as Determined by a Heat-flow Calorimeter. Journal of Chemical Thermodynamics, 1986. 18 (10): pp. 915-921.
56. Rydzy, M.B., J.M. Schicks, R. Naumann, and J. Erzinger, Dissociation Enthalpies of Synthesized Multicomponent Gas Hydrates with Respect to the Guest Composition and Cage Occupancy. The Journal of Physical Chemistry B, 2007. 111 (32): pp. 9539-9545.
57. Kang, S.P., H. Lee, and B.J. Ryu, Enthalpies of Dissociation of Clathrate Hydrates of Carbon Dioxide, Nitrogen, (Carbon Dioxide+ Nitrogen), and (Carbon Dioxide + Nitrogen+ Tetrahydrofuran). The Journal of Chemical Thermodynamics, 2001. 33 (5): pp. 513-521.
58. Lievois, J.S., R. Perkins, R.J. Martin, and R. Kobayashi, Development of an Automated, High Pressure Heat Flux Calorimeter and its Application to Measure the Heat of Dissociation and Hydrate Numbers of Methane Hydrate. Fluid Phase Equilibria, 1990. 59 (1): pp. 73-97.
59. Rueff Roger, M., E. Dendy Sloan, and F. Yesavage Victor, Heat Capacity and Heat of Dissociation of Methane Hydrates. AIChE Journal, 1988. 34 (9): pp. 1468-1476.
60. Handa, Y.P., Calorimetric Determinations of the Compositions, Enthalpies of Dissociation, and Heat Capacities in the Range 85 to 270 K for Clathrate Hydrates of Xenon and Krypton. The Journal of Chemical Thermodynamics, 1986. 18 (9): pp. 891-902.
61. Kim, S., S.H. Lee, and Y.T. Kang, Characteristics of CO2 Hydrate Formation/Dissociation in H2O + THF Aqueous Solution and Estimation of CO2 Emission Reduction by District Cooling Application. Energy, 2017. 120 (Supplement C): pp. 362-373.
62. Martinez, M.C., D. Dalmazzone, W. Furst, A. Delahaye, and L. Fournaison, Thermodynamic Properties of THF +CO2 Hydrates in Relation with Refrigeration Applications. Aiche Journal, 2008. 54 (4): pp. 1088-1095.
63. Handa, Y.P., Heat Capacities in the Range 95 to 260 K and Enthalpies of Fusion for Structure-II Clathrate Hydrates of Some Cyclic Ethers. The Journal of Chemical Thermodynamics, 1985. 17 (3): pp. 201-208.
64. Chu, C.-K., S.-T. Lin, Y.-P. Chen, P.-C. Chen, and L.-J. Chen, Chain Length Effect of Ionic Liquid 1-alkyl-3-methylimidazolium Chloride on the Phase Equilibrium of Methane Hydrate. Fluid Phase Equilibria, 2016. 413 57-64.
65. Chu, C.K., P.C. Chen, Y.P. Chen, S.T. Lin, and L.J. Chen, Inhibition Effect of 1-ethyl-3-methylimidazolium Chloride on Methane Hydrate Equilibrium. The Journal of Chemical Thermodynamics, 2015. 91 141-145.
66. Haynes, W.M. and D.R. Lide, CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data. 2011, Boca Raton, Fla.: CRC Press.
67. Thomas, S. and R.A. Dawe, Review of Ways to Transport Natural Gas Energy from Countries Which Do Not Need the Gas for Domestic Use. Energy, 2003. 28 (14): pp. 1461-1477.
68. Kanda, H., Economic Study on Natural Gas Transportation with Natural Gas Hydrate (NGH) Pellets, in 23rd world gas conference, Amsterdam. 2006
69. Nogami, T., N. Oya, H. Ishida, and H. Matsumoto, Development of Natural Gas Ocean Transportation Chain by Means of Natural Gas Hydrate (NGH), in Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). 2008
70. Falenty, A., W.F. Kuhs, M. Glockzin, and G. Rehder, 'Self-Preservation' of CH4 Hydrates for Gas Transport Technology: Pressure-Temperature Dependence and Ice Microstructures. Energy & Fuels, 2014. 28 (10): pp. 6275-6283.
71. Mimachi, H., S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Natural Gas Storage and Transportation within Gas Hydrate of Smaller Particle: Size Dependence of Self-preservation Phenomenon of Natural Gas Hydrate. Chemical Engineering Science, 2014. 118 208-213.
72. Watanabe, S., S. Takahashi, H. Mizubayashi, S. Murata, and H. Murakami, A Demonstration Project of NGH Land Transportation System, in Proceedings of the 6th international conference on gas hydrates. 2008
73. Florusse, L.J., C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh, and E.D. Sloan, Stable Low-pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate. Science, 2004. 306 (5695): pp. 469-471.
74. Nazari, K., Z. Taheri, M. Mehrabi, and R. Khodafarin, Natural Gas Hydrate Production and Transportation, in Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland, UK. 2011
75. Wang, X.L., M. Dennis, and L.Z. Hou, Clathrate Hydrate Technology for Cold Storage in Air Conditioning Systems. Renewable & Sustainable Energy Reviews, 2014. 36 34-51.
76. Delahaye, A., L. Fournaison, S. Marinhas, and M.C. Martinez, Rheological Study of CO2 Hydrate slurry in a Dynamic Loop Applied to Secondary Refrigeration. Chemical Engineering Science, 2008. 63 (13): pp. 3551-3559.
77. Marinhas, S., A. Delahaye, L. Fournaison, D. Dalmazzone, W. Furst, and J.P. Petitet, Modelling of the Available Latent Heat of a CO2 Hydrate Slurry in an Experimental Loop Applied to Secondary Refrigeration. Chemical Engineering and Processing, 2006. 45 (3): pp. 184-192.
78. Gough, S.R. and D.W. Davidson, Composition of Tetrahydrofuran Hydrate and the Effect of Pressure on the Decomposition. Canadian Journal of Chemistry, 1971. 49 (16): pp. 2691-2699.
79. Handa, Y.P., R.E. Hawkins, and J.J. Murray, Calibration and Testing of a Tian-Calvet Heat-Flow Calorimeter Enthalpies of Fusion and Heat Capacities for Ice and Tetrahydrofuran Hydrate in the Range 85 to 270 K. The Journal of Chemical Thermodynamics, 1984. 16 (7): pp. 623-632.
80. Yamamuro, O., M. Oguni, T. Matsuo, and H. Suga, Calorimetric Study of Pure and KOH-doped Tetrahydrofuran Clathrate Hydrate†. Journal of Physics and Chemistry of Solids, 1988. 49 (4): pp. 425-434.
81. Chu, C.-K., Application of DSC to Determine the Heat of Dissociation and Phase Boundary of Methane Hydrates in the Presence of Inhibitors and Promoters. PhD. Dissertation, Department of Chemical Engineering, National Taiwan University, 2016
82. Davidson, D.W., Water: A Comprehensive Treatise, Plenum. 1973.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70237-
dc.description.abstract本研究利用高壓差示掃描熱卡計探討在壓力範圍內 5.0~30.0 MPa時,環醚類促進劑(四氫呋喃、1,3-二噁烷、1,3-二氧戊環、2,5-二氫呋喃、環氧丙烷)形成結構II型甲烷水合物之促進效果。其表現強弱為:四氫呋喃 > 2,5-二氫呋喃 ≒ 1,3-二噁烷 ≒ 1,3-二氧戊環 > 環氧丙烷。且對於同一構型之甲烷水合物來說融解熱與相邊界高低有一定相關性。此外也檢視1-甲基哌啶形成結構H之甲烷水合物之促進效果;其表現不如上述任一結構II型促進劑,但在每莫爾水的融解熱的量值要大過1,3-二氧戊環、環氧丙烷之甲烷氣體水合物。
更進一步,此研究探討不同氣體作為客體分子(甲烷、二氧化碳、氮氣、氬氣、氪氣)對於純氣體水合物以及四氫呋喃-氣體水合物時相邊界及融解熱的差異。其相邊界高低為:氪氣水合物 ≒ 二氧化碳水合物 > 甲烷水合物 > 氬氣水合物 > 氮氣水合物。對於四氫呋喃氣體水合物則是:氪氣水合物 > 甲烷水合物 > 氬氣水合物 ≒ 二氧化碳水合物 > 氮氣水合物 > 氦氣水合物。除了二氧化碳水合物之外,對於純氣體水合物及四氫呋喃氣體水合物,融解熱大致上和相邊界高低呈正相關。值得注意的是在相對低壓的區間 < 10.0 MPa,四氫呋喃-氣體水合物之融解熱明顯地隨壓力下降而降低;而對於純氣體水合物在壓力操作區間 > 10.0 MPa,則沒有明顯的變化趨勢。
zh_TW
dc.description.abstractPromotion effects of cyclic ethers, including tetrahydrofuran, 1,3-dioxane, 1,3-dioxolane, 2,5-dihydrofuran, and propylene oxide, were explored by a high pressure micro differential scanning calorimeter (μDSC) with the pressure range from 5.0 MPa to 30.0 MPa. The promotion abilities of these structure II promoters are in the order: tetrahydrofuran > 2,5-dihydrofuran ≒ 1,3-dioxane ≒ 1,3-dioxolane > propylene oxide. Furthermore, the magnitude of dissociation heats are relevant to the highness of dissociation temperatures when it comes to the same structure of methane hydrate. Besides, structure H methane hydrate with 1-methylpiperidine was also examined. The promotion effect is weaken than any sII promoter mentioned above while the dissociation heat based on one mole water is larger than that of 1,3-dioxolane hydrate and that of propylene oxide hydrate.
Moreover, the influences of gases, (methane, carbon dioxide, nitrogen, argon, and krypton) on dissociation temperature and on dissociation heat were studied for pure gas hydrates and for THF mixed hydrates. The dissociation temperature are in the order: krypton hydrate ≒ carbon dioxide hydrate > methane hydrate > argon hydrate > nitrogen hydrate. And for THF mixed hydrates, the dissociation temperatures are in the order: krypton-THF hydrate > methane-THF hydrates > argon-THF hydrate ≒ carbon dioxide-THF hydrate > nitrogen-THF hydrate > helium-THF hydrate. Except for carbon dioxide hydrate, the dissociation heats are related to the highness of dissociation temperatures. It is noted that within 10.0 MPa, the dissociation heats of THF mixed hydrates decreased along with the pressure change obviously; however for pressure over 10.0 MPa, the dissociation heats of pure gas hydrates seemed independent from operation pressure.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:24:38Z (GMT). No. of bitstreams: 1
ntu-107-R05524027-1.pdf: 2023470 bytes, checksum: 17cb3693273acecb246a7731231d2e79 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 (III)
Abstract (IV)
Table of Contents(V)
Figures (VI)
Tables (X)
Chapter 1 Introduction (1)
1.1 Fundamental properties of gas hydrate (1)
1.2 Influence of additives on phase boundary of gas hydrate (2)
1.3 Influence of guest molecules on dissociation heat of gas hydrate (3)
Chapter 2 Literature Review (6)
2.1 Phase diagram of gas hydrate and phase rule (6)
2.2 Dissociation heat of gas hydrate (7)
Chapter 3 Apparatus and Methodology (31)
3.1 High-pressure micro differential scanning calorimeter and sample preparation (31)
3.2 The procedures of hydrate synthesis and properties measurement (32)
3.3 Determination of phase boundary of gas hydrate (33)
3.4 Determination of dissociation heat of gas hydrate (34)
Chapter 4 Results and Discussion (44)
4.1 Promotion effect of different additives on methane hydrate (45)
4.2 Dissociation heat of tetrahydrofuran mixed hydrate with different guest gases (47)
Chapter 5 Conclusion (88)
Reference (90)
dc.language.isoen
dc.title以掃描式熱卡計量測客體分子對氣體水合物融解熱之影響zh_TW
dc.titleUtilizing DSC to Determine the Influence of Guest Molecules on the Dissociation Heat of Gas Hydratesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee喬緒明,程學恒,黃世宏
dc.subject.keyword氣體水合物,掃描式熱卡計,熱力學促進劑,融解熱,惰性氣體,四氫?喃,zh_TW
dc.subject.keywordgas hydrates,differential scanning calorimeter,thermodynamic promoter,dissociation heat,noble gas,tetrahydrofuran,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201802506
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved