Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I wu)
dc.contributor.authorChao-Yu Leeen
dc.contributor.author李兆育zh_TW
dc.date.accessioned2021-06-17T04:24:37Z-
dc.date.available2028-08-07
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1]Chaudhry, A. and M.J. Kumar, Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Transactions on Device and Materials Reliability, 2004. 4(1): p. 99-109.
[2]Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
[3]Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9): p. 351-355.
[4]Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
[5]Eva, Y.A., L. Guohong, and D. Xu, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Reports on Progress in Physics, 2012. 75(5): p. 056501.
[6]Wu, Y., et al., Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013. 101(7): p. 1620-1637.
[7]VanMil, B.L., et al., Graphene Formation on SiC Substrates. Materials Science Forum, 2009. 615-617: p. 211-214.
[8]Yang, Z., et al., Structures and electronic properties of oxidized graphene from first-principles study. EPL (Europhysics Letters), 2014. 105(3): p. 37005.
[9]Su, C.-Y., et al., Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chemistry of Materials, 2009. 21(23): p. 5674-5680.
[10]Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442: p. 282.
[11]Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21(10): p. 3324-3334.
[12]Guo, B.D., et al., Graphene Doping: A Review. Insciences Journal, 2011. 1(2): p. 80-89.
[13]Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459: p. 820.
[14]Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5: p. 487.
[15]Yu, Y.-J., et al., Tuning the Graphene Work Function by Electric Field Effect. Nano Letters, 2009. 9(10): p. 3430-3434.
[16]Weiss Nathan, O., et al., Graphene: An Emerging Electronic Material. Advanced Materials, 2012. 24(43): p. 5782-5825.
[17]Han, M.Y., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 2007. 98(20): p. 206805.
[18]Aihua, Z., et al., Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Nanotechnology, 2011. 22(43): p. 435702.
[19]Reina, A., et al., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
[20]Lin, W.-H., et al., A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano, 2014. 8(2): p. 1784-1791.
[21]Wang, B., et al., Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016. 10(1): p. 1404-1410.
[22]Mohanty, N. and V. Berry, Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Letters, 2008. 8(12): p. 4469-4476.
[23]Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007. 6: p. 652.
[24]Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
[25]Li, X., et al., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society, 2011. 133(9): p. 2816-2819.
[26]Sagar, R.R., X. Zhang, and C. Xiong, Growth of graphene on copper and nickel foils via chemical vapour deposition using ethylene. Materials Research Innovations, 2014. 18(sup4): p. S4-706-S4-710.
[27]Moreno-B, et al., Graphene Synthesis Using a CVD Reactor and a Discontinuous Feed of Gas Precursor at Atmospheric Pressure. Journal of Nanomaterials, 2018. 2018: p. 11.
[28]Guermoune, A., et al., Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon, 2011. 49(13): p. 4204-4210.
[29]Srivastava, A., et al., Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chemistry of Materials, 2010. 22(11): p. 3457-3461.
[30]Sun, Z., et al., Growth of graphene from solid carbon sources. Nature, 2010. 468: p. 549.
[31]Wei, D., et al., Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009. 9(5): p. 1752-1758.
[32]Jung, D.H., et al., Effects of Hydrogen Partial Pressure in the Annealing Process on Graphene Growth. The Journal of Physical Chemistry C, 2014. 118(7): p. 3574-3580.
[33]Murdock, A.T., et al., Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano, 2013. 7(2): p. 1351-1359.
[34]Yu, Q., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011. 10(6): p. 443-449.
[35]Zhang, Y., et al., Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties. Nano Letters, 2012. 12(6): p. 2810-2816.
[36]Cunha, T.H.R., et al., Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape. Applied Physics Letters, 2014. 105(7): p. 073104.
[37]Butrymowicz, D.B., J.R. Manning, and M.E. Read, Diffusion in Copper and Copper Alloys. Part I. Volume and Surface Self-Diffusion in Copper. Journal of Physical and Chemical Reference Data, 1973. 2(3): p. 643-656.
[38]Robertson, S.D., Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces [8]. Nature, 1969. 221(5185): p. 1044-1046.
[39]Morgan, A.E. and G.A. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface. Surface Science, 1968. 12(3): p. 405-425.
[40]Sutter, P.W., J.I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nature Materials, 2008. 7(5): p. 406-411.
[41]Wu, M.C., Q. Xu, and D.W. Goodman, Investigations of graphitic overlayers formed from methane decomposition on Ru(0001) and Ru(1120) catalysts with scanning tunneling microscopy and high-resolution electron energy loss spectroscopy. Journal of physical chemistry, 1994. 98(19): p. 5104-5110.
[42]Vázquez De Parga, A.L., et al., Periodically rippled graphene: Growth and spatially resolved electronic structure. Physical Review Letters, 2008. 100(5).
[43]Gall, N.R., E.V. Rut'kov, and A.Y. Tontegode, Interaction of Silver Atoms with Iridium and with a Two-Dimensional Graphite Film on Iridium: Adsorption, Desorption, and Dissolution. Physics of the Solid State, 2004. 46(2): p. 371-377.
[44]Coraux, J., et al., Structural coherency of graphene on Ir(111). Nano Letters, 2008. 8(2): p. 565-570.
[45]Coraux, J., et al., Growth of graphene on Ir(111). New Journal of Physics, 2009. 11.
[46]Gall, N.R., E.V. Rut'kov, and A.Y. Tontegode, Two dimensional graphite films on metals and their intercalation. International Journal of Modern Physics B, 1997. 11(16): p. 1865-1911.
[47]Hamilton, J.C. and J.M. Blakely, Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surface Science, 1980. 91(1): p. 199-217.
[48]Vaari, J., J. Lahtinen, and P. Hautojärvi, The adsorption and decomposition of acetylene on clean and K-covered Co(0001). Catalysis Letters, 1997. 44(1): p. 43-49.
[49]Gamo, Y., et al., Atomic structure of monolayer graphite formed on Ni(111). Surface Science, 1997. 374(1-3): p. 61-64.
[50]Goodman, D.W. and J.T. Yates Jr, CO isotopic mixing measurements on nickel: Evidence for irreversibility of CO dissociation. Journal of Catalysis, 1983. 82(2): p. 255-260.
[51]Kawano, T., et al., Preparation of layered B/C/N thin films on nickel single crystal by LPCVD. Solid State Sciences, 2002. 4(11-12): p. 1521-1527.
[52]Madden, H.H., J. Küppers, and G. Ertl, Interaction of carbon monoxide with (110) nickel surfaces. The Journal of Chemical Physics, 1973: p. 3401-3410.
[53]Starodubov, A.G., et al., Intercalation of silver atoms under a graphite monolayer on Ni(111). Physics of the Solid State, 2004. 46(7): p. 1340-1348.
[54]Land, T.A., et al., STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surface Science, 1992. 264(3): p. 261-270.
[55]Starr, D.E., et al., Carbon films grown on Pt(1 1 1) as supports for model gold catalysts. Surface Science, 2006. 600(13): p. 2688-2695.
[56]Vlassiouk, I., et al., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 2011. 5(7): p. 6069-6076.
[57]Losurdo, M., et al., Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011. 13(46): p. 20836-20843.
[58]Zhao, P., et al., Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol. The Journal of Physical Chemistry C, 2013. 117(20): p. 10755-10763.
[59]Kim, H., et al., Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano, 2012. 6(4): p. 3614-3623.
[60]Choi, D.S., et al., Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Applied Materials and Interfaces, 2014. 6(22): p. 19574-19578.
[61]Dathbun, A. and S. Chaisitsak. Effects of three parameters on graphene synthesis by chemical vapor deposition. 2013.
[62]Wang, C., et al., Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition. Scientific Reports, 2014. 4: p. 4537.
[63]Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010. 5: p. 722.
[64]Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.
[65]Li, C., et al., Preparation of Single- and Few-Layer Graphene Sheets Using Co Deposition on SiC Substrate. Journal of Nanomaterials, 2011. 2011: p. 7.
[66]Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5): p. 51-87.
[67]Goniszewski, S., et al., Corrigendum: Correlation of p-doping in CVD Graphene with Substrate Surface Charges. Scientific Reports, 2017. 7: p. 41467.
[68]Leenaerts, O., B. Partoens, and F.M. Peeters, Adsorption of H2O, NH3, CO, O2, and NO on graphene: A first-principles study. Physical Review B, 2008. 77(12): p. 125416.
[69]Wang, Y. and M. Lieberman, Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2. Langmuir, 2003. 19(4): p. 1159-1167.
[70]Wang, H., et al., Hysteresis of Electronic Transport in Graphene Transistors. ACS Nano, 2010. 4(12): p. 7221-7228.
[71]Paniagua, S.A., et al., Production of heavily n- and p-doped CVD graphene with solution-processed redox-active metal–organic species. Materials Horizons, 2014. 1(1): p. 111-115.
[72]Adam, S., et al., A self-consistent theory for graphene transport. Proceedings of the National Academy of Sciences, 2007. 104(47): p. 18392-18397.
[73]Hwang, E.H., S. Adam, and S. Das Sarma, Transport in chemically doped graphene in the presence of adsorbed molecules. Physical Review B, 2007. 76(19): p. 195421.
[74]Hwang, E.H., S. Adam, and S.D. Sarma, Carrier Transport in Two-Dimensional Graphene Layers. Physical Review Letters, 2007. 98(18): p. 186806.
[75]Amit, I., et al., Role of Charge Traps in the Performance of Atomically Thin Transistors. Advanced Materials, 2017. 29(19): p. 1605598.
[76]Late, D.J., et al., Hysteresis in Single-Layer MoS2 Field Effect Transistors. ACS Nano, 2012. 6(6): p. 5635-5641.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70235-
dc.description.abstract由於二維材料具有優異的導電性和高度透明的特性,研究和開發二維材料元件一直是科學家的目標。自石墨烯被發現以來,石墨烯快速地發展且其在各個領域都極具前景,並且具有廣泛應用的巨大潛力。本質石墨烯的費米能階切在價帶和導帶的交點,也就是說可傳輸的載子相當得少,若要將其應用,摻雜調整其費米能階,使其成為N型或是P型石墨烯,是不可必免。在本論文中,展示兩種摻雜石墨烯的方法,就其結果進行分析和討論,確認費米能階被調控到適合的位子。
第一種方法利用自組裝層修飾基板,透過自組裝分子摻雜石墨烯。當我們在自組裝層上轉印石墨烯,原本因二氧化矽塊材中及表面缺陷所造成不可控的P型摻雜現象被降低,使石墨烯表現接近本質石墨烯。除此之外,自組裝分子的官能基能對石墨烯進行摻雜。然而,在數據顯示上電性量測的摻雜效果與光譜預期的摻雜效果相反的特性表現,我們認為造成這個現象的原因之一,可能來自石墨烯與自組裝層間的水分子殘留,根據理論上的計算,當水分子的氧基朝向石墨烯時,水分子會傾向於給石墨烯電子;相反地,若是水分子氫基朝向石墨烯,水分子會傾向於從石墨烯上拿走電子,因此,相反的摻雜效果產生。除了非預期的相反摻雜效果,用基板修飾來摻雜還會遇到一個難題,也就是這種方法對石墨烯和基板的品質有一定要求,使得可控的穩定性較低。所以,我們需找一個更為簡單且有效的摻雜方法。
第二種方法則是蒸氣法摻雜,主要流程是將石墨烯置於充滿分子蒸氣腔體中,使石墨烯吸附分子,達到摻雜效果。首先,我們發現吸附的分子,主要利用載子交換的方式對石墨烯進行摻雜,且在一定程度以下的摻雜,能夠提升石墨烯的電性表現;然而,過多的摻雜反而將使石墨烯品質下降。除此之外,N(P)型摻雜物會隨著負(正)閘極電壓增加下,給石墨烯更重的摻雜效果,然而,在正(負)閘極電壓下,摻雜物則不受電壓影響。
最後,我們還研究不同基板上的電滯效應,我們發現不論在二氧化矽或是自組裝層的基板上,電滯效應都存在。在其他研究中指出造成電滯效應的原因,大致可歸咎於兩個原因─水氣、基板缺陷,而他們的機制可能為載子交換和電容效應。這兩種機制在電滯效應上,呈現兩個相反的結果。就我們實驗發現,電性量測的速率與現象的存活時間不匹配,第二則是電容效應產生的效果可能較載子交換來的小。因此,載子交換佔據了主導的地位。
zh_TW
dc.description.abstractStudy and develop 2D-materials devices have been the aim of scientists due to excellent conductivity and highly transparent properties. Since the discovery of graphene, graphene is becoming a rapidly growing and enormously promising field, and have great potential for wide applications. However, conduction band and valance band of intrinsic graphene is meeting at Fermi level, and implies that the carrier for conducting is insufficient. In this thesis, we demonstrate two methods for graphene doping, and analyze the results to make sure that the Fermi level could tune to suitability.
The first method is molecular doping from substrate surface by modifying the SiO2/Si substrate surface with self-assembled molecule (SAM). When depositing graphene on SAM layer, the p-doping effect from silicon dioxide would be decreasing. The function groups of SAM would also dope the intrinsic graphene. However, the few H2O molecule between SAM layer and graphene would make serious impression on graphene. In our results, we found the results of SAM layer doping effect by measuring transfer curve are opposite totally of ultraviolet photoelectron spectroscopy. When few H2O molecule adsorb between SAM layer and graphene, the charge would transfer from H2O to graphene while the O atom of H2O head to the graphene surface. On the other hand, the charge would transfer from graphene to H2O when the H atom head to the graphene surface. The unexpected type of doping and high quality requirment of graphene and self-assembled layer make this method worthless. Thus, an easy and efficient method is desirable.
Second method is vapor doping. We kept graphene in a place with vapor of dopant fill. Finally, graphene will be doped by adsorbing molecules on its surface. We found that the dominant mechanism of doping could be charge transfer between adsorbate and graphene. Besides, graphene could optimize by doping within certain degree.
Finally, we also study the hysteresis of g-FET on different SAM-substrate and vapor doping graphene. In previous reports, the hysteresis of g-FET might originate from transfer and capacitive gating of H2O and SiO2 substrate, and compete with each other. In our study, we found the sweeping rate of measurement is not comparable to the life time of capacitive gating and the influence of capacitive gating is lower than that of charge transfer. For that result, charge transfer dominate the effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:24:37Z (GMT). No. of bitstreams: 1
ntu-107-R05941090-1.pdf: 7251132 bytes, checksum: 5e41461ebb6269a579e327bbdf87bad1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 Ⅰ
摘要 Ⅱ
Abstract Ⅳ
CONTENTS Ⅵ
List of Figures Ⅸ
List of Tables XII
CH1緒論 1
1.1石墨烯簡介 1
1.2文獻回顧 2
1.2.1石墨烯的電子結構 2
1.2.2石墨烯的製備方法 5
1.2.3石墨烯的摻雜 6
1.3石墨烯金氧半場效電晶體 8
1.3.1結構與基本性質 8
1.3.2困境與未來應用 9
1.4研究動機 11
CH2實驗理論與方法 12
2.1實驗理論與原理 12
2.1.1化學氣相沉積法(Chemical Vapor Deposition,簡稱CVD) 12
2.1.1.1前驅物 12
2.1.1.2壓力 12
2.1.1.3基材 13
2.1.1.4成長溫度 14
2.1.1.5降溫速率 14
2.1.2石墨烯場效電晶體 14
2.1.3自組裝分子 16
2.1.4拉曼光譜儀 17
2.1.5紫外光電子能譜學(Ultraviolet Photoelectron Spectroscopy, UPS)和X射線光電子能譜學(X-ray photoelectron spectroscopy, XPS) 19
2.1.5.1UPS/XPS實驗儀器 19
2.1.5.2紫外光電子能譜學(UPS) 20
2.1.5.3 X射線光電子能譜學(XPS) 21
2.1.6氧電漿蝕刻機 21
2.1.7熱蒸鍍機 22
2.2實驗方法 23
2.2.1 CVD石墨烯薄膜之成長與檢測 23
2.2.1.1銅片準備 23
2.2.1.2石墨烯成長 23
2.2.2CVD石墨烯場效電晶體元件製作與量測 24
2.2.2.1基板準備 24
2.2.2.2自組裝製成 25
2.2.2.3石墨烯樣品轉印 25
2.2.2.4電極蒸鍍 25
2.2.2.5石墨烯電晶體量測 26
2.2.3蒸氣法摻雜 27
CH3石墨烯電晶體以自組裝層修飾 29
3.1基於二氧化矽之CVD石墨烯電晶體 29
3.1.1石墨烯品質 29
3.1.2石墨烯電晶體 30
3.2基於自組裝層修飾之CVD石墨烯電晶體 31
3.2.1自組裝層 31
3.2.2石墨烯電晶體 32
3.3電滯效應 34
3.3.1二氧化矽基板 34
3.3.2HMDS基板 35
3.3.3ODTS基板 36
3.4討論 36
CH4石墨烯電晶體以蒸氣法摻雜 39
4.1乙醇 39
4.1.1轉移曲線 39
4.1.2電滯效應 40
4.2胺基分子 40
4.2.1紫外光電子能譜(UPS)和X射線光電子能譜(XPS) 40
4.2.2轉移曲線 41
4.2.3電滯效應 45
4.2.4馳豫時間 46
4.3五氟苯酚分子 50
4.3.1紫外光電子能譜(UPS) 50
4.3.2轉移曲線 50
4.3.3電滯效應 52
4.3.4馳豫時間 53
CH5結論 56
5.1總結 56
5.2參考文獻 57
dc.language.isozh-TW
dc.subject石墨烯zh_TW
dc.subject化學氣相沉積法zh_TW
dc.subject自組裝層zh_TW
dc.subject摻雜zh_TW
dc.subject電滯效應zh_TW
dc.subjectGrapheneen
dc.subjectChemical Vapor Depositionen
dc.subjectself-assembled layeren
dc.subjectDopingen
dc.subjecthysteresisen
dc.title藉由物理性摻雜製備P型/N型石墨烯並研究摻雜石墨烯之電特性zh_TW
dc.titleFabricate p-/n-type graphene via physical doping and
Investigate electrical properties of doping graphene
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如,吳肇欣,陳美杏
dc.subject.keyword石墨烯,化學氣相沉積法,自組裝層,摻雜,電滯效應,zh_TW
dc.subject.keywordGraphene,Chemical Vapor Deposition,self-assembled layer,Doping,hysteresis,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201803565
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved