Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorKeng-Lam Punen
dc.contributor.author潘景林zh_TW
dc.date.accessioned2021-05-17T09:24:11Z-
dc.date.available2017-08-27
dc.date.available2021-05-17T09:24:11Z-
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-18
dc.identifier.citation第一章
[1] B.‐C. Chung, G. F. Virshup, S. Hikido, and N. R. Kaminar Appl. Phys. Lett. 55, 1741 (1989)
[2] G. Giroult-Matlakowski, U. Theden, A. W. Blakers, in Proceedings of the 2nd World Conference on PV Solar Energy Conversion, J. Schmid et al., Eds. (European Commission, Directorate General Joint Research Center, Ispra, Italy, 1998), pp. 3403–3406.
[3] J. Zhao, A. Wang, M. A. Green, F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998)
[4] C. E. Witt et al., in Proceedings of the 1st IEEE World Conference on PV Energy Conversion (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1994), pp. 2262–2270.
[5] Carlson DE. Semiconductor device having a body of amorphous silicon. U.S. Patent No. 4,064,521. 1977.
[6] Carlson DE, Wagner S. Amorphous silicon photovoltaic systems. In Renewable Energy. Island Press: Washington, DC,993; 403–435
[7] X. Wu, J.C. Keane, R.G. Dhere, C. DeHart, D.S. Albin, A. Duda, T.A.Gessert, S. Asher, D.H. Levi, P. Sheldon, Proc. 17th EuropeanPhotovoltaic Solar Energy Conf., Munich, 2001, p. 995.
[8] S.H. Demtsu, J.R. Sites, Proc. 31st IEEE Photovoltaics Specialists Conf.,Orlando, 2005, p. 347.
[9]Ramanathan K, Contreras MA, Perkins CL, Asher S,Hasoon FS, Keane J, Young D, Romero M, Metzger W,Noufi R, Ward JS, Duda A. Properties of 192% effi-
ciency ZnO/CdS/CuInGaSe2, thin-film solar cells. Progress in Photovoltaics Research and Applications 2003;11: 225–230.
[10] Contreras MA, Egaas B, Ramanathan K, Hiltner J,Swartzlander A, Hasoon F, Noufi R. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics Research and Applications 1999; 7: 311–316
[11] US Patent No. 5,441,897 (15 August 1995) and US Patent No. 5,436,204 (25 July 1995).
[12] Tierney, S.; Heeney, M.; McCulloch, I. Synth. Met. 2005, 148, 195.
[13]Wong, K.-T.; Chao, T.-C.; Chi, L.-C.; Chu, Y.-Y.; Balaiah, A.; Chiu,S.-F.; Liu, [14]G.Conibeer, Third-generation photovoltaic, Materials Today 10,2007, 42-50.
[15] Yang J, Banerjee A, Guha S. Triple junction amorphous silicon alloy solar cell with 146% initial and 130% stable conversion efficiencies. Applied Physics Letters 1997; 70: 2975–2977
[16] Wong, S.; Joselevich, E.; Woolley, A.; Cheung, C.; Lieber, C.Nature 1998, 394, 52.
第二章
[1] http://www.citizendia.org/Semiconductor
[2] http://en.wikipedia.org/wiki/Semiconductor
[3]KENJIWATANABE*,TAKASHITANIGUCHIANDHISAOKANDA.Nature,2004,DOI :10.1038/nmat1134
[4] http://www.fact-index.com/d/di/direct_bandgap.html
[5] http://en.wikipedia.org/wiki/Direct_and_indirect_band_gaps
[6] http://www.lib.ncu.edu.tw/~hong/atmhmpg/knowatm/intro/sun_rad.htm
[7] http://www.astro.ncu.edu.tw/~wchen/Courses/Ast101/radiatio.htm
[8] http://www.phys.ncku.edu.tw/~astrolab/e_book/sun/sun.html
[9] http://pvcdrom.pveducation.org/SUNLIGHT/AIRMASS.HTM
[10] http://en.wikipedia.org/wiki/Air_mass_coefficient
[11]http://shs.edu.tw/works/essay/2007/10/2007102120004873.pdf
[12]http://zh.wikipedia.org/zh-tw/%E4%BA%8C%E6%A5%B5%E9%AB%94
[13] http://sun.cis.scu.edu.tw/~lab/knowledge/2.htm
[14] http://www.ma-tek.com/service_detail.php?path=46
[15] http://highscope.ch.ntu.edu.tw/wordpress/?p=1599
[16] http://www.nobelprize.org/educational/physics/microscopes/tem/index.html
[17]http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
[18] http://www4.nau.edu/microanalysis/Microprobe-SEM/Instrumentation.html
[19] http://www.mdu.edu.tw/~yinyu/contributions/SEM-EDS%20readouts.pdf
[20] https://en.wikipedia.org/wiki/Scanning_electron_microscope
[21] http://elearning.stut.edu.tw/caster/3.2.3.htm
[22]http://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover
第三章
[1] C.Harmon, Expereience curves of photovoltaic technology; Environmentally Compatible Energy Strategies (ECS) Project: Lexenburg, Australia, March 30, 2000 [2]L.Zhang; H.Shen; Z.J.Yang; J.S.Jin, Wiley InterScience 2009, 18, 54-60, DOI: 10.1002/pip.934
[3] T.J.King; K.C.Saraswat, IEEE TRANSACTIONS ON ELECTRON EDVIES 1994, 41, 9.
[4] R.A.Street, Hydrogenated amorphous silicon; Cambridges Press: Cambridges, U.K.,1991
[5] S.Y.Lo; D.S. Wuu; C.C.Wang; S.Y.Lien, IEEE TRANSACTIONS ON ELECTRON DEVICES 2011, 58, 5.
[6] J.Park; H.Ham; J. Lee;T. Kim, PVSC 2010, 001657-001659.
[7] S.Ray ; S.Hazra, PVSC 1996, 1077-1080.
[8] R.S.Crandall,Solar Energy Research Institute 1991, DOI: 10.1103/PhysRevB.43.4057.
[9] F.Dross*; K. Baert; T. Bearda;J. Deckers; V. Depauw; O.i E. Daif; I.Gordon,A. Gougam; J. Govaerts; S. Granata; R. Labie; X. Loozen; R.Martin;A. Masolin; B.O’Sullivan; Y. Qiu; J. Vaes; D. V. Gestel; J. V. Hoeymissen;
A.Vanleenhove; K.V. Nieuwenhuysen; S. Venkatachalam; M. Meuris
;J. Poortmansg, 26TH EUPVSEC 2011,DOI: 10.1002/pip.1238.
[10] F. Dross; J.Robbelein; B.Vandevelde; E.V. Kerschaver; I.Gordon;G.Beaucarne; J.Poortmans, Appl. Phys. A 2007, 89, 149–152 ,DOI: 10.1007/s00339-0074195-2.
[11] S.C.Shiu; Shih-Che Hung; Hong Jhang Syu; C.F.Lin, J.Electronchem.Soc. 2011, 158(2),95-98
[12] J. H. Petermann; D. Zielke1; J. Schmidt;F.Haase;E. G. Rojas; R. Brendel, Solar Energy Research Hamelin 2012(20), 1-5, DOI:10.1002/pip.1129.
[13] J.Plummer; M. Deal; P. Griffin, Silicon VLSI Technology:Prentice Hall Upper Saddle River
[14] K.Peng; J.Hu; Y.Yan; Y.Wu; H. Fang; Y.Xu; S.T Lee; J.Zhu, Adv.Funct.Mater 2006, 16, 387-394, DOI:10.1002/adfm.200500392.
[15] http://www.me.tnu.edu.tw/study/proj/proj90/
[16] http://me.csu.edu.tw/swl/non/microlight-1/microlight-1.pdf
[17] share.stut.edu.tw/EshareFile/2010_2/2010_2_3fc415c5.ppt
[18] http://www.paymo.com.tw/product-c2-2.htm#323
第四章
[1] D.T.Stevenson and R.T.Keyes, “Measurement of carrier lifetimes in Germanium and Silicon,”J.Appl.Phys.26,190(1955)
[2]J.R.Haynes and J.A.Hornbeck,”temporary traps in silicon and germanium,”Phys.Rev.90 152(1953).
[3]Y.Mada,Jpn.J.Appl.Phys.18,2171(1979).
[4]F.Shimura,T.Okiu and T.Kusama,J.Appl.Phys.67,7168(1990).
[5]O.Palais and A.Arcari,”Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers,”J.Appl.Phys.93.4686(2003).
[6]謝信宏,有奈米侷限之矽金氧半發光二極體之研究,國立台灣大學電子工程學研究所碩士論文(2003).
[7]M.S.Wang and J.M.Borrego,”Experimental requirements for the measurement of excess carrier lifetime in semiconductors using microwave techniquese,”IEEE transactions on instrumentation and measurement,39,1054(1990).
[8]J.Linnros,”Carrier lifetime measurements using free carrier absorption transients,”J.Appl.Phys.84 275(1998).
[9] E.Yablonovitch and T.Gmitter,”Auger recombination in silicon at low carrier densities,”Appl.Phys.Lett.49,587(1986).
[10] http://en.wikipedia.org/wiki/Hall_effect
第五章
[1]G.Horowitz,F.Garnier. Solar Energy Materials. 1986,13(1),47-55.
[2]S.Glenis,G.Horowitz,G.Tourillon,F.Garnier. Solar Energy Materials. 1984,111(2),93-103.
[3]J.J Chao,S.C.Shiu,S.C.Hung,C.F.Lin,Nanotechnology.2010,21(28).
[4]J.S Hung,C.Y.Hsiao,S.J.Syu,J.J.Chao,C.F.Lin,Solar Energy Materials and Solar Cells, 2009,621-624.
[5]X.J.Shen,B.Q.Sun,D.Liu,S.T.Lee,Journal of the American chemical society,2011,133,19408-19415.
[6]Lining He,C.Y.Jiang,H.Wang,Donny Lai, Rusli, Applied materials and interfaces,2012,4,1704-1708.
[7]S.Ito,S.M.Zakeeruddin,R.Humphry.Baker,P.Liska,R.Charvet,P.Comte,M.K.Nazeeruddin,P.Pechy,M.Takata,H.Miura,S.Uchida,M.Gratzel,Advanced Materials,2006,18(9),1202-1205.
[8]C.Y.Kwong,W.C.H.Choy,A.B.Djurisic,P.C Chiu,K.W Cheng,W.K.Chan, Nanotechnology,2004,15(9).
[9] K.Keis,E.Magnusson,H.Lindstrom,S.E.Lindquist,A.Hagfeldt,Solar Energy Materials and Solar Cells,2002,73(1),51-58.
[10]F.Zhang,B.Q.Sun,T.Song,X.L.Zhu,S.T.Lee,Chemistry of materials,2011,23,2084-2090.
[11] 林俞成 國立成功大學材料科學與工程學系碩士論文,”`逆壓印製作導電高分子(PEDOT:PSS)電極圖案, 二零一零年七月
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7019-
dc.description.abstract隨著現今石化能源面臨短缺的危機與全球暖化問題,綠色再生能源受到很高的關注,在可再生能源中,因為太陽光相對穏定,因此太陽能電池也變得越來重要。在現今的太陽能產業中以矽太陽能電池為主,然而,矽太陽能電池的成本與石油發電比較下仍然很貴,在製作矽太陽能模組的成本裏,矽基板的成本佔矽太陽能電池模組成本的一半,導致矽太陽能電池的成本提高,減少矽材料的使用能有效降低矽太陽電池的成本。在本篇論文中利用低成本的金屬輔助蝕刻法(metal assisted etching)來製造單晶矽薄膜,利用微影技術(lithography)於單晶矽片的表面形成微米孔洞的光阻圖形,接著透過金屬輔助蝕刻法進行縱向蝕刻以及橫向蝕刻,在縱向蝕刻中,銀粒子會通過微米洞向下蝕刻至特定的深度,而橫向蝕刻可以把把微米洞結構底部往水平方向蝕刻,直至微米洞結構與矽基板分開,經過縱向以及橫向蝕刻過程後,可以利用把薄膜轉移到玻璃基板上,剩餘的矽基板可以回收。 在波長400nm到900nm之下,單晶矽薄膜的光吸收率大於89%,我們利用XRD檢測證明單晶矽薄膜與矽晶片有相同晶格特性,在布拉格角度(Bragg Angle) 69o之下有峰值,代表晶格方向為(100)。而我們利用微波電導衰退(Microwave photoconductive decay)及霍爾效應(hall effect)來量測單單晶矽薄膜的載子生命週期(carrier lifetime)及載子遷移率(carrier mobility),單晶矽薄膜的載子生命週期為25μs,載子遷移率為240cm2/Vs,因此載子傳輸距離(carrier diffusion length)為125μm,大於單晶矽薄膜之厚度,因此適合於製作太陽能電池。最後,我們利用此單晶矽薄膜與有機材料PEDOT:PSS製成有機無機太陽能電池,不需要利用高温退火等高温製程,達到低成本,低温的製程的需求,元件之能量轉換效率(power conversion efficiency)為1.87%,短路電流12.76mA,開路電壓0.37V。zh_TW
dc.description.abstractGlobal warming and fossil fuels crisis are two important issues in the world, so alternative renewable energy attracts much attention. Among them, the renewable solar energy is much potential because sun light is relatively stable and clean. Currently, crystalline Si solar cells dominate the photovoltaic market, but the cost of Si solar cells is still high compared to fossil fuels. Because half of the production cost of Si solar cell modules comes from Si wafer, reducing the Si thickness constitutes a strong leverage for cost reduction. In this work, we introduce a low cost method to fabricate the crystalline Si thin foils by vertical and horizontal muti-step metal-assisted etching. Including vertical etching forms deep trenches where the depth can be controlled by the etching time, and horizontal etching removes the Si materials from the Si substrate. The Si thin foil can be transferred to glass substrate, the remaining Si substrate can be recycled. The optical absorption of Si thin foil was over 89% at wavelength between 400 and 900nm. From XRD spectrum, the Si thin foils have a peak near 69o, which corresponding to Si (100) plane. In addition, the carrier lifetime and carrier mobility of crystalline Si thin foils are 25 μs, and 240 cm2/Vs, resulting in a carrier diffusion length of 125 μm. The carrier diffusion length is much longer than the thickness of the thin foils, so the Si thin foils are suitable to fabricating photovoltaic devices. Finally, we use the conducting polymer, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), to fabricate hybrid solar cells on the Si thin foils. The fabrication process does not require high temperature annealing. The power conversion efficiency reached 1.87%, where the short circuit current density was 12.76 mA/cm2, and the open circuit voltage was 0.37 V.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:24:11Z (GMT). No. of bitstreams: 1
ntu-101-R99941107-1.pdf: 4396667 bytes, checksum: a7d968dd6af89b6e39a7f752512b1c99 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.1.1 能源需求與太陽能電池之發展 1
1.1.2 矽太陽能電池之成本分析 2
1.2 論文導覽 3
1.3 參考資料 4
第二章 實驗原理 6
2.1半導體能隙之介紹 6
2.2太陽光電池之基本介紹 8
2.2.1 太陽光頻譜 8
2.2.2 太陽能電池之工作原理 9
2.2.3太陽能電池之重要參數 13
2.3 掃描式電子顯微鏡 17
2.3.1 掃描式電子顯微鏡之發展 17
2.3.2掃描式電子顯微鏡之原理 18
2.4 X光繞射分析儀 20
2.5 參考資料 23
第三章 利用金屬輔助蝕刻法製造單晶矽薄膜 25
3.1 金屬輔助蝕刻法之簡介 25
3.2實驗動機 26
3.3實驗步驟 27
3.4微影製程(lithography) 29
3.5金屬輔助蝕刻法 32
3.5.1沉積銀粒子 32
3.5.2 縱向蝕刻與條件 34
3.5.3 橫向蝕刻與條件 39
3.6 水純度對金屬輔助蝕刻法之影響 44
3.7 曝光時間對蝕刻之影響 48
3.8 實驗結果與討論 51
3.8.1晶矽薄膜的晶格特性 51
3.8.2結構特色 52
3.9 結論 56
3.10 參考資料 57
第四章 單晶矽薄膜之特性分析 59
4.1 單晶矽薄膜之光學特性 59
4.2少數載子生命週期之量測 65
4.2.1 實驗原理 65
4.2.2 實驗結果 67
4.3單晶矽薄膜載子遷移率分析 70
4.3.1實驗原理 70
4.3.2實驗結果 71
4.4 結論 73
4.5 參考資料 73
第五章 單晶矽薄膜於太陽能電池之應用 75
5.1有機無機混成太陽能電池之簡介 75
5.2 利用旋塗法於單晶矽薄膜塗佈PEDOT:PSS混成太陽能電池 76
5.2.1實驗動機 76
5.2.2 有機材料PEDOT:PSS之簡介 76
5.2.3元件運作原理 78
5.2.4 薄膜轉移 79
5.2.5元件製作流程 82
5.2.6 元件電流電壓曲線分析 82
5.3利用慢乾法製造單晶矽薄膜與PEDOT:PSS混成太陽能電池 85
5.3.1 實驗動機 85
5.3.2元件製作流程 85
5.3.3 元件電流電壓曲線分析 86
5.4結論 93
5.5參考資料 94
第六章總結 96
6.1 總結 96
6.2 未來展望 97
著作列表 98
dc.language.isozh-TW
dc.title利用金屬輔助蝕刻法製造單晶矽薄膜於太陽能電池之應用zh_TW
dc.titleFabrication of single crystalline silicon thin film by Metal Assisted Etching and Photonvoltaic applicationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君(I-Chun Cheng),吳肇欣(Chao-Hsin Wu),何文章(Wen-Jeng Ho)
dc.subject.keyword金屬輔助蝕刻法,薄膜,縱向蝕刻,橫向蝕刻,轉移,zh_TW
dc.subject.keywordmetal-assisted etching,thin foil,vertical etching,horizontal etching,transferred,en
dc.relation.page98
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf4.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved