請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70189
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙福杉 | |
dc.contributor.author | Wei-Han Chang | en |
dc.contributor.author | 張韡瀚 | zh_TW |
dc.date.accessioned | 2021-06-17T03:48:24Z | - |
dc.date.available | 2021-02-23 | |
dc.date.copyright | 2018-02-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-01-24 | |
dc.identifier.citation | 1.De Benedictis A, Moritz-Gasser S, Duffau H. Awake mapping optimizes the extent of resection for low-grade gliomas in eloquent areas. Neurosurgery. 2010;66(6):1074-84.
2.Duffau H. Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiologie Clinique/Clinical Neurophysiology. 2007;37(6):373-82. 3.Kombos T, Picht T, Derdilopoulos A, Suess O. Impact of intraoperative neurophysiological monitoring on surgery of high-grade gliomas. Journal of Clinical Neurophysiology. 2009;26(6):422-5. 4.De Witte E, Mariën P. The neurolinguistic approach to awake surgery reviewed. Clinical neurology and neurosurgery. 2013;115(2):127-45. 5.Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. The Lancet Neurology. 2005;4(8):476-86. 6.Simon MV. Intraoperative neurophysiologic sensorimotor mapping and monitoring in supratentorial surgery. Journal of Clinical Neurophysiology. 2013;30(6):571-90. 7.Kombos T, Süss O, Vajkoczy P. Subcortical mapping and monitoring during insular tumor surgery. Neurosurgical focus. 2009;27(4):E5. 8.Kim S-M, Kim SH, Seo D-W, Lee K-W. Intraoperative neurophysiologic monitoring: basic principles and recent update. Journal of Korean medical science. 2013;28(9):1261-9. 9.Duffau H. The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia. 2008;46(4):927-34. 10.Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004;127(10):2316-30. 11.Tonn J. Awake craniotomy for monitoring of language function: benefits and limits. Acta neurochirurgica. 2007;149(12):1197-8. 12.July J, Manninen P, Lai J, Yao Z, Bernstein M. The history of awake craniotomy for brain tumor and its spread into Asia. Surgical neurology. 2009;71(5):621-4. 13.Bizzi A. Presurgical mapping of verbal language in brain tumors with functional MR imaging and MR tractography. Neuroimaging Clinics of North America. 2009;19(4):573-96. 14.Boatman D. Cortical bases of speech perception: evidence from functional lesion studies. Cognition. 2004;92(1):47-65. 15.Ilmberger J, Ruge M, Kreth F-W, Briegel J, Reulen H-J, Tonn J-C. Intraoperative mapping of language functions: a longitudinal neurolinguistic analysis. Journal of Neurosurgery. 2008;109(4):583-92. 16.Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. Journal of neurosurgery. 1989;71(3):316-26. 17.Bertani G, Fava E, Casaceli G, Carrabba G, Casarotti A, Papagno C, et al. Intraoperative mapping and monitoring of brain functions for the resection of low-grade gliomas: technical considerations. Neurosurgical focus. 2009;27(4):E4. 18.Vickers CP. Social networks after the onset of aphasia: The impact of aphasia group attendance. Aphasiology. 2010;24(6-8):902-13. 19.Hilari K. The impact of stroke: are people with aphasia different to those without? Disability and rehabilitation. 2011;33(3):211-8. 20.Mandonnet E. A surgical approach to the anatomo-functional structure of language. Neurochirurgie. 2017;63(3):122-8. 21.Kral T, Kurthen M, Schramm J, Urbach H, Meyer B. Stimulation mapping via implanted grid electrodes prior to surgery for gliomas in highly eloquent cortex. Operative Neurosurgery. 2006;58(suppl_1):ONS-36-ONS-43. 22.Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging. 2001;13(4):534-46. 23.Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. Journal of neurosurgery. 2003;98(4):764-78. 24.Goldring S, Gregorie EM. Surgical management of epilepsy using epidural recordings to localize the seizure focus: review of 100 cases. Journal of neurosurgery. 1984;60(3):457-66. 25.Fernández IS, Loddenkemper T. Electrocorticography for seizure foci mapping in epilepsy surgery. Journal of Clinical Neurophysiology. 2013;30(6):554-70. 26.Połczyńska M. New tests for language mapping with intraoperative electrical stimulation of the brain to preserve language in individuals with tumors and epilepsy: a preliminary follow-up study. Poznań Studies in Contemporary Linguistics. 2009;45(2):261-79. 27.Schäffler L, Lüders HO, Beck GJ. Quantitative comparison of language deficits produced by extraoperative electrical stimulation of Broca's, Wernicke's, and basal temporal language areas. Epilepsia. 1996;37(5):463-75. 28.Crone NE. Functional mapping with ECoG spectral analysis. Advances in neurology. 2000;84:343-51. 29.Mandonnet E, Jbabdi S, Taillandier L, Galanaud D, Benali H, Capelle L, et al. Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro-oncology. 2007;9(1):63-9. 30.Önal Ç, Otsubo H, Araki T, Chitoku S, Ochi A, Weiss S, et al. Complications of invasive subdural grid monitoring in children with epilepsy. Journal of neurosurgery. 2003;98(5):1017-26. 31.Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: A systematic review and meta‐analysis. Epilepsia. 2013;54(5):828-39. 32.Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert review of medical devices. 2012;9(5):491-500. 33.Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, et al. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. Journal of neurosurgery. 2005;102(4):664-72. 34.Roux F-E, Ibarrola D, Tremoulet M, Lazorthes Y, Henry P, Sol J-C, et al. Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery. 2001;49(5):1145-57. 35.Rutten G-J, Ramsey N, Noordmans H-J, Willems P, van Rijen P, van der Sprenkel JWB, et al. Toward functional neuronavigation: implementation of functional magnetic resonance imaging data in a surgical guidance system for intraoperative identification of motor and language cortices: Technical note and illustrative case. Neurosurgical focus. 2003;15(1):1-6. 36.Keles GE, Lamborn KR, Berger MS. Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery. 2003;53(3):556-64. 37.Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience. Radiology. 2005;234(1):218-25. 38.Rasmussen I-A, Lindseth F, Rygh O, Berntsen E, Selbekk T, Xu J, et al. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta neurochirurgica. 2007;149(4):365-78. 39.Reinges M, Nguyen H-H, Krings T, Hütter B-O, Rohde V, Gilsbach J. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta neurochirurgica. 2004;146(4):369-77. 40.Duffau H, Lopes M, Arthuis F, Bitar A, Sichez J, Van Effenterre R, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. Journal of Neurology, Neurosurgery & Psychiatry. 2005;76(6):845-51. 41.Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization Grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurgical focus. 2009;27(2):E7. 42.Pereira LCM, Oliveira KM, L‘Abbate GL, Sugai R, Ferreira JA, da Motta LA. Outcome of fully awake craniotomy for lesions near the eloquent cortex: analysis of a prospective surgical series of 79 supratentorial primary brain tumors with long follow-up. Acta neurochirurgica. 2009;151(10):1215. 43.Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):753-66. 44.Penfield W, Erickson TC. Epilepsy and Cerebral Localization. A. Study of the Mechanism. Treatment and Prevention of Epileptic Seizures. Southern Medical Journal. 1942;35(2):222. 45.Penfield W, Rasmussen T. The cerebral cortex of man; a clinical study of localization of function. Oxford, England: Macmillan; 1950. 46.Taylor MD, Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. Journal of neurosurgery. 1999;90(1):35-41. 47.Archer DP, McKenna JM, Morin L, Ravussin P. Conscious-sedation analgesia during craniotomy for intractable epilepsy: a review of 354 consecutive cases. Canadian Journal of Anaesthesia. 1988;35(4):338-44. 48.Reulen H, Schmid U, Ilmberger J, Eisner W, Bise K. Tumor surgery of the speech cortex in local anesthesia. Neuropsychological and neurophysiological monitoring during operations in the dominant hemisphere. Der Nervenarzt. 1997;68(10):813-24. 49.Talacchi A, Santini B, Casagrande F, Alessandrini F, Zoccatelli G, Squintani GM. Awake surgery between art and science. Part I: clinical and operative settings. Functional neurology. 2013;28(3):205. 50.Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, et al. Validity and Reliability of the Observer's: Assessment of Alertness/Sedation Scale: Study with: Intravenous Midazolam. Journal of clinical psychopharmacology. 1990;10(4):244-51. 51.Sarubbo S, Latini F, Panajia A, Candela C, Quatrale R, Milani P, et al. Awake surgery in low-grade gliomas harboring eloquent areas: 3-year mean follow-up. Neurological Sciences. 2011;32(5):801-10. 52.Brennan NMP, Whalen S, de Morales Branco D, O'Shea JP, Norton IH, Golby AJ. Object naming is a more sensitive measure of speech localization than number counting: converging evidence from direct cortical stimulation and fMRI. Neuroimage. 2007;37:S100-S8. 53.Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta neurochirurgica. 2010;152(2):185-93. 54.Ojemann GA. Individual variability in cortical localization of language. Journal of neurosurgery. 1979;50(2):164-9. 55.Ojemann G, Mateer C. Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science. 1979;205(4413):1401-3. 56.Berger MS, Ojemann GA. Intraoperative brain mapping techniques in neuro-oncology. Stereotactic and functional neurosurgery. 1992;58(1-4):153-61. 57.Berger M, Ojemann G, Lettich E. Neurophysiological monitoring during astrocytoma surgery. Neurosurgery Clinics of North America. 1990;1(1):65-80. 58.Talacchi A, Casartelli M, Capasso R, Miceli G. Awake surgery between art and science. Part II: language and cognitive mapping. Functional neurology. 2013;28(3):223. 59.Rofes A, Spena G, Miozzo A, Fontanella M, Miceli G. Advantages and disadvantages of intraoperative language tasks in awake surgery: a three-task approach for prefrontal tumors. Journal of neurosurgical sciences. 2015;59(4):337-49. 60.Duffau H, Capelle L, Sichez J-P, Faillot T, Abdennour L, Koune J-DL, et al. Intra-operative direct electrical stimulations of the central nervous system: the Salpetriere experience with 60 patients. Acta neurochirurgica. 1999;141(11):1157-67. 61.Rofes A, Miceli G. Language mapping with verbs and sentences in awake surgery: a review. Neuropsychology review. 2014;24(2):185-99. 62.Coello AF, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks: a review. Journal of neurosurgery. 2013;119(6):1380-94. 63.Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F, et al. Intraoperative Subcortical Languagetract Mapping Guides Surgical Removalof Gliomas Involving Speech Areas. Neurosurgery. 2007;60(1):67-82. 64.DeLeon J, Gottesman RF, Kleinman JT, Newhart M, Davis C, Heidler-Gary J, et al. Neural regions essential for distinct cognitive processes underlying picture naming. Brain. 2007;130(5):1408-22. 65.Gold BT, Buckner RL. Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron. 2002;35(4):803-12. 66.Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128(4):797-810. 67.Kaplan EF GH, Weintraub S. The Boston Naming Test, 2nd ed1983. 68.Snodgrass JG, Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of experimental psychology: Human learning and memory. 1980;6(2):174. 69.Metz-Lutz M-N, Wioland F, Brock G. A real-time approach to spoken language processing in aphasia. Brain and language. 1992;43(4):565-82. 70.Ojemann GA, Whitaker HA. The bilingual brain. Archives of neurology. 1978;35(7):409-12. 71.Ojemann GA. Brain organization for language from the perspective of electrical stimulation mapping. Behavioral and Brain Sciences. 1983;6(2):189-206. 72.Whittle I, Midgley S, Georges H, Pringle A-M, Taylor R. Patient perceptions of “awake” brain tumour surgery. Acta neurochirurgica. 2005;147(3):275-7. 73.Santini B, Talacchi A, Casagrande F, Casartelli M, Savazzi S, Procaccio F, et al. Eligibility criteria and psychological profiles in patient candidates for awake craniotomy: a pilot study. Journal of neurosurgical anesthesiology. 2012;24(3):209-16. 74.Little KM, Friedman AH, editors. Awake craniotomy for malignant glioma resection. International Congress Series; 2004;1259: 409-14. 75.Sahjpaul RL. Awake craniotomy: controversies, indications and techniques in the surgical treatment of temporal lobe epilepsy. Canadian journal of neurological sciences. 2000;27(S1):S55-S63. 76.Wahab S, Grundy P, Weidmann C. Patient experience and satisfaction with awake craniotomy for brain tumours. British journal of neurosurgery. 2011;25(5):606-13. 77.Hamberger MJ, Seidel WT, Mckhann GM, Perrine K, Goodman RR. Brain stimulation reveals critical auditory naming cortex. Brain. 2005;128(11):2742-9. 78.Talacchi A, Santini B, Savazzi S, Gerosa M. Cognitive effects of tumour and surgical treatment in glioma patients. Journal of neuro-oncology. 2011;103(3):541-9. 79.Ebel H, Ebel M, Schillinger G, Klimek M, Sobesky J, Klug N. Surgery of intrinsic cerebral neoplasms in eloquent areas under local anesthesia. min-Minimally Invasive Neurosurgery. 2000;43(04):192-6. 80.Meyer FB, Bates LM, Goerss SJ, Friedman JA, Windschitl WL, Duffy JR, et al., editors. Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo clinic proceedings. 2001;76(7):677-87. 81.Lang FF, Olansen NE, DeMonte F, Gokaslan ZL, Holland EC, Kalhorn C, et al. Surgical resection of intrinsic insular tumors: complication avoidance. Journal of neurosurgery. 2001;95(4):638-50. 82.Hamer PCDW, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. Journal of Clinical Oncology. 2012;30(20):2559-65. 83.Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64(5):836-46. 84.Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130(3):623-9. 85.Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39(1):369-82. 86.Santini B, Talacchi A, Squintani G, Casagrande F, Capasso R, Miceli G. Cognitive outcome after awake surgery for tumors in language areas. Journal of neuro-oncology. 2012;108(2):319-26. 87.Teixidor P, Gatignol P, Leroy M, Masuet-Aumatell C, Capelle L, Duffau H. Assessment of verbal working memory before and after surgery for low-grade glioma. Journal of neuro-oncology. 2007;81(3):305-13. 88.Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L. The articulatory loop: study of the subcortical connectivity by electrostimulation. Neuroreport. 2003;14(15):2005-8. 89.Papagno C, Casarotti A, Comi A, Gallucci M, Riva M, Bello L. Measuring clinical outcomes in neuro-oncology. A battery to evaluate low-grade gliomas (LGG). Journal of neuro-oncology. 2012;108(2):269-75. 90.Ojemann JG, Ojemann GA, Lettich E. Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. Journal of neurosurgery. 2002;97(1):33-8. 91.Roux F-E, Lubrano V, Lauwers-Cances V, Trémoulet M, Mascott CR, Démonet J-F. Intra-operative mapping of cortical areas involved in reading in mono-and bilingual patients. Brain. 2004;127(8):1796-810. 92.Bilotta F, Stazi E, Titi L, Lalli D, Delfini R, Santoro A, et al. Diagnostic work up for language testing in patients undergoing awake craniotomy for brain lesions in language areas. British journal of neurosurgery. 2014;28(3):363-7. 93.Pillon A, d'Honincthun P. The organization of the conceptual system: The case of the “object versus action” dimension. Cognitive neuropsychology. 2010;27(7):587-613. 94.Miceli G, Silveri MC, Nocentini U, Caramazza A. Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology. 1988;2(3-4):351-8. 95.Benson RR, FitzGerald D, LeSueur L, Kennedy D, Kwong K, Buchbinder B, et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52(4):798. 96.Herholz K, Reulen H-J, von Stockhausen H-M, Thiel A, llmberger J, Kessler J, et al. Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery. 1997;41(6):1253-62. 97.Duffau H. Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta neurochirurgica. 2012;154(4):575-84. 98.Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, et al. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. Journal of neurosurgery. 2015;123(2):325-39. 99.Chang W, Pei Y, Wei K, Chen M, Yeh Ha, Jaw F, et al. Outcomes of a novel naming test applied in intraoperative language mapping for awake brain surgery: a preliminary study. Int J Clin Exp Med. 2017;10(7):10453-62. 100.Spena G, Nava A, Cassini F, Pepoli A, Bruno M, D’Agata F, et al. Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes. Acta neurochirurgica. 2010;152(11):1835-46. 101.Eisner W, Burtscher J, Bale R, Sweeney R, Koppelstätter F, Golaszewski S, et al. Use of neuronavigation and electrophysiology in surgery of subcortically located lesions in the sensorimotor strip. Journal of Neurology, Neurosurgery & Psychiatry. 2002;72(3):378-81. 102.Skirboll SS, Ojemann GA, Berger MS, Lettich E, Winn HR. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38(4):678-85. 103.Davis MH, Johnsrude IS. Hierarchical processing in spoken language comprehension. Journal of Neuroscience. 2003;23(8):3423-31. 104.Papathanassiou D, Etard O, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N. A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage. 2000;11(4):347-57. 105.Callahan BL, Macoir J, Hudon C, Bier N, Chouinard N, Cossette-Harvey M, et al. Normative data for the pyramids and palm trees test in the Quebec-French population. Archives of Clinical Neuropsychology. 2010;25(3):212-7. 106.Guo Q, He C, Wen X, Song L, Han Z, Bi Y. Adapting the Pyramids and Palm Trees Test and the Kissing and Dancing Test and developing other semantic tests for the Chinese population. Applied Psycholinguistics. 2014;35(6):1001-19. 107.Hier DB, Hagenlocker K, Shindler AG. Language disintegration in dementia: Effects of etiology and severity. Brain and language. 1985;25(1):117-33. 108.Blanken G, Dittmann J, Haas J-C, Wallesch C-W. Spontaneous speech in senile dementia and aphasia: Implications for a neurolinguistic model of language production. Cognition. 1987;27(3):247-74. 109.Duffau H, Capelle L, Lopes M, Faillot T, Sichez J-P, Fohanno D. The insular lobe: physiopathological and surgical considerations. Neurosurgery. 2000;47(4):801-11. 110.Moritz-Gasser S, Herbet G, Maldonado IL, Duffau H. Lexical access speed is significantly correlated with the return to professional activities after awake surgery for low-grade gliomas. Journal of neuro-oncology. 2012;107(3):633-41. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70189 | - |
dc.description.abstract | 背景:腦腫瘤清醒開顱手術結合「術中電刺激功能定位」及「連續功能監測」,主要的目的是定位及監測語言功能,並且在腦腫瘤完全切除及保留術後語言功能間尋求平衡。「術中電刺激功能定位」是在以電刺激抑制局部腦功能,同時讓清醒的病患執行簡單的術中語言測驗。當電流抑制某一腦區而病患無法正確執行語言測驗時,則該腦區被視為語言功能區,在切除腦腫瘤時需要避開。而「術中連續功能監測」則為讓病患持續執行語言測驗,以監測語言功能是否因腫瘤切除過程影響而導致功能下降。術中語言測驗的種類非常多,它們因為手術環境的特殊限制,必須能被簡單執行。然而,目前沒有足夠的文獻證明,簡單的術中測驗是否能保留複雜的語言功能,而眾多測驗中,哪一種又最能保留術後的語言功能;此外,也沒有明確的定義闡明,在連續功能監測中,當病患的語言功能下降時,哪一個時機點手術應該停止,以達到最大的腦腫瘤切除率而且不影響術後的語言功能。所以,在第一篇研究中,我們提出一個簡單,但更全面的術中語言測驗,並對病患進行詳細的術後語言功能評估。我們假設這種術中測驗可以保留術後語言功能;第二篇研究中,我們定量病患術中測驗的表現,以數據化的方式監測語言功能,並分析語言功能的數值與術後的語言功能的關係。我們假設這種監測方式可以找到適當的切點數值,以預測及保留術後的語言功能。方法:我們以修改後的短版「波士頓失語症測驗」作為術前、術後的語言功能評估工具。在第一個研究中,我們提出一個更全面的術中語言測驗,它修改至短版「波士頓失語症測驗」的測驗圖卡。它包含物體、動作、顏色、數字、形狀、英文字母及中文單字的命名測驗。並以折線圖及成對樣本t檢定,來分析術後語言功能在各個細項測驗上的變化。在第二個研究中,我們以圖片命名(DO 80)及更複雜的語義關聯測驗(金字塔棕梠樹測驗,Pyramids and Palm Trees test, PPTT)當作術中連續功能監測的語言測驗,並以正確回答比率(正確率)量化術中語言功能的表現。以皮爾生相關係數及接收者操作特徵曲線(receiver operating characteristic, ROC curve),來分析腫瘤切除末期之術中測驗的正確率與術後語言功能之關係。結果:在第一個研究中,我們提出的術中測驗可以保留病患在各個細項測驗的術後語言功能,而概念理解、詞義辨識及詞句重複這三個細項最能看出術後語言功能變化。在第二個研究中,發現術中圖片命名及語義關聯(金字塔棕梠樹)測驗的表現,都與術後一周的語言功能相關(p < 0.05),而較複雜的「金字塔棕梠樹測驗」有較高的相關性。逐步線性回歸分析發現「金字塔棕梠樹測驗」是預測術後一周,各個語言細項測驗的唯一預測因子。當「金字塔棕梠樹測驗」的正確率下降到0.75(敏感度:80%;特異度:100%)時,術後的語言功能仍能保留。結論:我們所提出的更全面的樹中命名測驗能保留各個細項上的語言功能,而修改後的短版「波士頓失語症測驗」可以測出術後的語言功能變化。在預測術後語言功能上,「金字塔棕梠樹測驗」是個好的術中連續功能監測工具。而當它的正確率下降至0.75時,腫瘤切除應該停止,以保留術後一周的語言功能。 因此,我們建議以較全面及複雜的術中語言測驗,作為「術中電刺激功能定位」及「連續功能監測」,並以數據化的方式來監測術中語言功能。 | zh_TW |
dc.description.abstract | Objective: Awake craniotomy combined with intraoperative stimulation mapping (ISM) and monitoring pursues the balance between extensive tumor resection and preserving postoperative language function. During ISM, the awake patient performs intraoperative linguistic tasks while suppressed-electrical stimulation is applying on the regional brain. However, few studies have evaluated the efficacy of intraoperative linguistic testing based on language outcomes and the dilemma that exists in patients whose tumor resection was restricted due to signs of linguistic disturbance observed during awake brain surgery. Therefore, in our first series study, we devised a novel intraoperative task and hypothesized that it can be easily applied in ISM and can preserve the language function of patients after surgery. In our second series study, we quantified the change in postoperative language function by comparing it with the intraoperative linguistic performance to understand the degree to which the recovery of language impairment caused by tumor resection can be achieved through spontaneous neuroplasticity. Methods: We used the modified short form of the Boston Diagnostic Aphasia Examination (sfBDAE) to assess preoperative and postoperative language functions. In the first series study, our novel and comprehensive naming task, which was modified using the stimulus sets of the sfBDAE, included objects, actions, colors, numbers, English letters, Chinese words, and shapes, and was employed in ISM. We analyzed the trend of the changed language function in line charts and compared the change in linguistic measurements by using a paired t test. In the second series study, a visual object naming test called the Dénomination d’objet 80 (DO 80) as well as a semantic-association test called the Pyramids and Palm Trees Test (PPTT) were used for intraoperative linguistic testing. The DO 80 and PTT were performed alternatively during the subcortical functional monitoring of tumor resection. Pearson’s correlation and multiple linear regression were used to analyze the correlation between the accuracy rates of the intraoperative linguistic tasks in the terminal stage of tumor resection and the scores of the postoperative sfBDAE subtests. A Receiver Operating Characteristic (ROC) analysis was used to define the cut point of the accuracy rates to predict postoperative language deficits. Results: In the first series study, the patient’s language function was either preserved after surgery or exhibited significant improvement over time. The trend of functional recovery varied in the complex ideational material, word discrimination, and repeating phrases subtests. In the second series study, both the intraoperative DO 80 and PPTT revealed a significant correlation with the postoperative sfBDAE domain scores (p < 0.05), with a higher correlation observed in the PPTT. A linear regression model demonstrated that only the PPTT could be included to predict the postoperative sfBDAE domain scores, with the explanatory power ranging from 0.51 to 0.89 (all p < 0.01). The ROC analysis demonstrated that the cutoff value for the accuracy rate in the PPTT was 0.75, yielding a sensitivity of 80% and specificity of 100%. Conclusion: The modified sfBDAE can indicate preoperative variations in language function, and the novel and comprehensive naming task used in this study can be applied in ISM and can preserve or improve linguistic outcomes. In addition, the PPTT is a feasible tool for intraoperative linguistic evaluations to predict postoperative language outcomes. Tumor resection should be limited when the accuracy rate of the PPTT approaches the cutoff value of 0.75. We therefore suggest using more comprehensive intraoperative tasks in ISM and intraoperative monitoring as well as the numerical accuracy rate proposed in this study for intraoperative linguistic monitoring. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:48:24Z (GMT). No. of bitstreams: 1 ntu-107-D01548011-1.pdf: 2748555 bytes, checksum: 22c813fc816fb650c694fd983eefb6ec (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………Ⅰ
謝辭……………………………………………………………………………………Ⅱ 中文摘要 ……………………………………………………………………………Ⅲ Abstract………………………………………………………………………………Ⅴ List of Figures ………………………………………………………………………Ⅹ List of Tables………………………………………………………………………XI Chapter 1. Introduction………………………………………………………… 1 1.1 Methods for Mapping Language Areas …………………………………… 3 1.1.1 Electrophysiological investigation………………………………………… 4 1.1.2 Magnetic resonance imaging ………………………………………………… 6 1.1.3 Awake craniotomy with intraoperative stimulation mapping……………… 7 1.2 The Details of Awake brain surgery ………………………………………… 8 1.2.1 The brief history of awake craniotomy ………………………………… 8 1.2.2 A brief overview of awake craniotomy ………………………………………9 1.2.3 Intraoperative stimulation mapping and functional monitoring …………… 10 1.2.3.1 Direct electrical stimulation ………………………………………………13 1.2.3.2 Intraoperative linguistic tasks ……………………………………………14 1.2.4 The limitations of awake craniotomy ………………………………………15 1.3 The purpose of this dissertation …………………………………………………17 Chapter 2. Outcomes of a novel naming test applied in intraoperative language mapping ……………………………………………………………… 19 2.1 Background …………………………………………………………………… 19 2.2 Materials and Methods…………………………………………………………21 2.2.1 Patient Participants ………………………………………………………… 21 2.2.2 Pre- and postoperative evaluations ……………………………………… 22 2.2.3 Intraoperative linguistic tasks ……………………………………………… 22 2.2.4 The procedure of intraoperative stimulation mapping …………………… 24 2.2.5 Statistical analysis ………………………………………………………… 26 2.3 Results ………………………………………………………………………… 26 2.3.1 Trend of language function over time ……………………………………29 2.4 Discussion ……………………………………………………………………… 35 Chapter 3. Intraoperative Linguistic Performance Predicting Postoperative Language Deficits …………………………………………………………… 40 3.1 Background …………………………………………………………………… 40 3.2 Materials and Methods ……………………………………………………… 41 3.2.1 Patient participants ………………………………………………………… 41 3.2.2 Pre- and postoperative evaluation …………………………………………42 3.2.3 Intraoperative linguistic tests ………………………………………………43 3.2.4 the procedure of Intraoperative stimulation mapping ………………………44 3.2.5 Data analysis ………………………………………………………………45 3.3 Results ………………………………………………………………………… 45 3.3.1 Correlation between intraoperative and postoperative evaluations …………49 3.3.2 Explanatory power of intraoperative linguistic scores to postoperative sfBDAE scores ……………………………………………………………50 3.3.3 ROC analysis for identifying the ability and cutoff value …………………52 3.3.4 Language outcomes in the 3-month postoperative follow-up ………………53 3.4 Discussion ……………………………………………………………………… 54 Chapter 4. Conclusion ……………………………………………………………61 Reference ………………………………………………………………………… 62 | |
dc.language.iso | en | |
dc.title | 以新式術中語言測驗精準保留術後之語言功能 | zh_TW |
dc.title | Applying Novel Intraoperative Linguistic Testing
for Precisely Preserving Postoperative Language Function | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃基礎,陳右穎,黃美涓,魏國珍 | |
dc.subject.keyword | 清醒開顱,術中語言測驗,命名,語義關聯,術中定位,術中監測,波士頓失語症測驗,語言功能預後,神經可塑性, | zh_TW |
dc.subject.keyword | awake craniotomy,linguistic task,object naming,semantic association,intraoperative mapping,intraoperative monitoring,Boston Diagnostic Aphasia Examination,language outcome,neuroplasticity, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU201800147 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-01-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。