Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70180Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李雨 | |
| dc.contributor.author | Yen-Cheng Chen | en |
| dc.contributor.author | 陳晏誠 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:47:55Z | - |
| dc.date.available | 2020-02-23 | |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-25 | |
| dc.identifier.citation | [1] M. Abrigo, S. L. McArthur, P. Kingshott, Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects, Macromolecular Bioscience, 14 (2014) 772-792.
[2] V. Jones, J. E. Grey, K. G. Harding, ABC of wound healing: Wound dressings, BMJ: British Medical Journal, 332 (2006) 777. [3] W. Paul, C. P. Sharma, Chitosan and alginate wound dressings: a short review, Trends Biomater Artif Organs, 18 (2004) 18-23. [4] B. K. Park, M.-M. Kim, Applications of chitin and its derivatives in biological medicine, International Journal of Molecular Sciences, 11 (2010) 5152-5164. [5] M. Tracey, Chitin, in: Modern Methods of Plant Analysis/Moderne Methoden der Pflanzenanalyse, Springer, 1955, pp. 264-274. [6] N. K. Mathur, C. K. Narang, Chitin and chitosan, versatile polysaccharides from marine animals, J. Chem. Educ, 67 (1990) 938. [7] M. Rinaudo, Chitin and chitosan: properties and applications, Progress in Polymer Science, 31 (2006) 603-632. [8] M. Kaya, K. Ö. Tozak, T. Baran, G. Sezen, I. Sargin, Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea), EXCLI Journal, 12 (2013) 503. [9] C. S. Souza, B. M. Oliveira, G. G. Costa, A. Schriefer, A. Selbach-Schnadelbach, A. P. T. Uetanabaro, C. P. Pirovani, G. A. Pereira, A. G. Taranto, J. C. d. M.Cascardo, Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches’ broom disease of cacao, The Journal of Microbiology, 47 (2009) 431-440. [10] F. Gaill, J. Persson, J. Sugiyama, R. Vuong, H. Chanzy, The chitin system in the tubes of deep sea hydrothermal vent worms, Journal of Structural Biology, 109 (1992) 116-128. [11] K. Florey, Profiles of drug substances, excipients and related methodology, Academic press, 1983. [12] J. Blackwell, K. Gardner, F. Kolpak, R. Minke, W. Claffey, Refinement of cellulose and chitin structures, in, ACS Publications, 1980. [13] C. Pillai, W. Paul, C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, 34 (2009) 641-678. [14] L. Ilium, Chitosan and its use as a pharmaceutical excipient, Pharmaceutical research, 15 (1998) 1326-1331. [15] I. Wedmore, J. G. McManus, A. E. Pusateri, J. B. Holcomb, A special report on the chitosan-based hemostatic dressing: experience in current combat operations, Journal of Trauma and Acute Care Surgery, 60 (2006) 655-658. [16] M. Rhazi, J. Desbrieres, A. Tolaimate, M. Rinaudo, P. Vottero, A. Alagui, M. El Meray, Influence of the nature of the metal ions on the complexation with chitosan: Application to the treatment of liquid waste, European Polymer Journal, 38 (2002)1523-1530. [17] E. I. Cadogan, C.-H. Lee, S. R. Popuri, H.-Y. Lin, Effect of Solvent on Physico-Chemical Properties and Antibacterial Activity of Chitosan Membranes, International Journal of Polymeric Materials and Polymeric Biomaterials, 63 (2014) 708-715. [18] R. Jayakumar, M. Prabaharan, P. S. Kumar, S. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnology Advances, 29 (2011) 322-337. [19] N. Tsipouras, C. J. Rix, P. H. Brady, Passage of silver ions through membrane-mimetic materials, and its relevance to treatment of burn wounds with silver sulfadiazine cream, Clinical Chemistry, 43 (1997) 290-301. [20] P. R. Klokkevold, H. Fukayama, E. C. Sung, C. N. Bertolami, The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits, Journal of Oral and Maxillofacial Surgery, 57 (1999) 49-52. [21] T.-C. Chou, E. Fu, C.-J. Wu, J.-H. Yeh, Chitosan enhances platelet adhesion and aggregation, Biochemical and Biophysical Research Communications, 302 (2003) 480-483. [22] T. Okamura, T. Masui, M. K. St John, S. M. Cohen, R. J. Taylor, Evaluation of effects of chitosan in preventing hemorrhagic cystitis in rats induced by cyclophosphamide, (1995). [23] M. B. Dowling, R. Kumar, M. A. Keibler, J. R. Hess, G. V. Bochicchio, S. R. Raghavan, A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action, Biomaterials, 32 (2011) 3351-3357. [24] R. Eloy, J. Baguet, G. Christé, M. C. Rissoan, J. Paul, J. Belleville, An in vitro evaluation of the hemostatic activity of topical agents, Journal of Biomedical Materials Research Part A, 22 (1988) 149-157. [25] J. Jesty, M. Wieland, J. Niemiec, Assessment in vitro of the active hemostatic properties of wound dressings, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89 (2009) 536-542. [26] Kuan-Yu Chen, Tzu-Hsin Lin, Cheng-Ying Yang, Ya-Wen Kuo and U. Lei, Mechanics for the adhesion and aggregation of red blood cells on chitosan, Submitted to Journal of Mechanics (2017). [27] Kuan-Yu Chen, Tzu-Hsin Lin, Yen-Cheng Chen, Cheng-Ying Yang, Ya-Wen Kuo, Han-Mei Chang, Ssu-Chun Hsu and U Lei, Study of the hemostatic characteristics of chitosan-based wound dressings via flow-through devices. Submitted to Journal of Biomedical Materials Research, Part A (2017). [28] R. J. Hunter, Zeta potential in colloid science: principles and applications, Academic press, 2013. [29] F. Tokumasu, G. R. Ostera, C. Amaratunga, R. M. Fairhurst, Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection, Experimental Parasitology, 131 (2012) 245-251. [30] R. Millner, A. S. Lockhart, R. Marr, Chitosan arrests bleeding in major hepatic injuries with clotting dysfunction: an in vivo experimental study in a model of hepatic injury in the presence of moderate systemic heparinisation, The Annals of The Royal College of Surgeons of England, 92 (2010) 559-561. [31] B. L. Bennett, L. F. Littlejohn, B. S. Kheirabadi, F. K. Butler, R. S. Kotwal, M.A. Dubick, J. A. Bailey, in, ARMY INST OF SURGICAL RESEARCH FORT SAM HOUSTON TX, 2014. [32] Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 011;36:981-1014. [33] C. W. Beh, W. Zhou, T.-H. Wang, PDMS–glass bonding using grafted polymeric adhesive–alternative process flow for compatibility with patterned biological molecules, Lab on a Chip, 12 (2012) 4120-4127. [34] M. Quaglio, G. Canavese, E. Giuri, S.L. Marasso, D. Perrone, M. Cocuzza, C. Pirri, Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips, Journal of Micromechanics and Microengineering, 18 (2008) 055012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70180 | - |
| dc.description.abstract | 在敷料止血性能評估研究上,除已有許多文獻利用靜態方式進行外,文獻中目前已有兩項以動態方式進行測量的裝置與方法,本文稱之為定壓及定流量裝置。當測試液(本研究採用者為人類全血)流通敷料紗布時,我們在定壓及定流量裝置中分別量測其流量及壓力降,以判定敷料紗布的止血性能。兩者各有優缺點,而本文旨在研發一項兼具上述兩項動態裝置特性的流通裝置。
本研究的裝置含一個進口及兩個出口,在入口處以固定流量輸入測試血液,再分流至主及副流道,其中主流道所流經處均沒紗布阻檔、但副流道卻需流經待測試紗布(含敷料)後再流出裝置,我們就“一段主流道及一段副流道(含待測試紗布的區域)的壓力降”和“流出主及副流道出口的血液量”,紀錄二者隨時間的演變,以作敷料紗布止血性能優劣的判定。副流道壓力降愈大、流出血液量愈少且愈快趨於平緩乃至停止者,其止血性能愈佳。本裝置以PDMS分三部份製作,可簡易地分開更換紗件試件後再予結合而進行下一次測試,且也可對測試過的紗布進行影像擷取與觀察,以了解血球聚結及止血部份細節。另本流通測試裝置之血流狀況有別於文獻中定壓及定流量裝置者,而更接近於血管破損時傷口出血時用紗布掩蓋止血的狀況。 根據本研究的實驗結果,我們得到以下結論: (1)本實驗設計之流通測試裝置操作簡單,可在更接近血管破損出血的動態狀況下測試各式含敷料紗布的止血性能。 (2)就含甲殼素的紗布言,初步研判“酸化處理”此一變因比“提升紗布的甲殼素含量”更能有效提升止血效果。以上結論使本裝置可應用供相關產品開發,也可作為研究止血機制的工具。希望本論文對未來止血性能評估發展與欲投入這領域的研究者有所幫助。 | zh_TW |
| dc.description.abstract | Besides many static tests, there are two types of dynamic devices and methods for testing the hemostatic performance of wound dressings (or gauzes) in a flowing environment, and are called here the constant pressure head (CPH) device and the constant flow rate (CFR) devices, respectively. The “mass through the device” and the “pressure drop across the gauze section” were measured, respectively, for the CPH and CFR devices, for accessing the hemostatic performance when test fluids (human whole blood here) were let to flow through the gauzes. Both devices have their advantages and disadvantages. The goal of the present study is to develop a dynamic flow-through device which possesses the characteristics of both the CPH and CPR devices.
There are one inlet and two outlets in the present proposed device. The test blood was injected at a constant flow rate into the device, and then divided into two streams: the main stream without gauzes in its passage, and the secondary stream flowing through the test gauzes. Both the time evolution of the pressure drops across a section of the main stream channel and that of the secondary stream channel (containing the gauze section) and the flow-through blood masses at both outlets were measured for accessing the dynamic hemostatic performance of gauzes. The gauze possesses a better hemostatic performance when the associated pressure drop is higher and the flow-through blood mass is less in the secondary channel. The device has three parts which are made of PDMS, and are bonded together. The parts can be separated and re-bonded easily for exchanging the gauze samples. The aggregation of red blood cells on gauzes after test was examined for understanding some of the details of hemostasis. The blood flow in the present device is more closely related to the bleeding at wound in comparison with those in the CPH and CFR devices. Some findings from the present experimental study are as follows. (1) It has been proved that the present device is an effective and easy-operated device, for accessing the hemostatic performance of vary gauzes. (2) For the chitosan-based gauzes, the acidification of gauzes can enhance substantially the hemostatic performance, and is more effectively by comparing with the enhancement associated with increasing the chitosan content in the gauzes. It is hoped that the present study is helpful for the development of more effective gauzes for hemostasis, for better understanding of the hemostatic mechanisms, and for the new researchers who wish to devote to the related subject. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:47:55Z (GMT). No. of bitstreams: 1 ntu-107-R03543026-1.pdf: 6099358 bytes, checksum: 6ef653f1c184cce46edd53d45665f9bf (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 II
誌謝 III 摘要 IV Abstract V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1前言 1 1-1-1皮膚癒合 1 1-1-2傷口敷料 1 1-2文獻回顧 2 1-3研究動機與目的 10 1-4血球聚結的力學因素 11 1-5本文架構 15 第二章 實驗裝置與方法 16 2-1流道裝置設計 16 2-2 PDMS翻模製作 18 2-3流道元件接合 20 2-4實驗紗布 21 2-5實驗用血液 25 2-6實驗設備 26 第三章 結果與討論 29 3-1實驗裝置中源自流力的壓力降 29 3-2不同甲殼素紗布的止血性能 32 3-3定流量測試裝置的實驗結果 39 3-4定壓測試裝置的實驗結果 42 3-5流量變化的影響 44 3-6止血指數分析 48 3-7甲殼素紗布的不同堆疊方式 51 3-8血球黏附堆疊 54 第四章 結論與未來展望 56 4-1結論 56 4-2未來展望及工作 56 參考文獻 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓力降 | zh_TW |
| dc.subject | 流通測試裝置 | zh_TW |
| dc.subject | 止血性能 | zh_TW |
| dc.subject | 流通質量 | zh_TW |
| dc.subject | Pressure drop. | en |
| dc.subject | Flow-through device | en |
| dc.subject | Hemostatic performance | en |
| dc.subject | Flow-through mass | en |
| dc.title | 以流通測試裝置探討甲殼素傷口敷料的止血性能 | zh_TW |
| dc.title | Study of the hemostatic performance of chitosan-based wound dressings via a flow-through device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭雅雯,林子忻,楊政穎 | |
| dc.subject.keyword | 流通測試裝置,止血性能,流通質量,壓力降, | zh_TW |
| dc.subject.keyword | Flow-through device,Hemostatic performance,Flow-through mass,Pressure drop., | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU201800130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| Appears in Collections: | 應用力學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 5.96 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
