請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70170
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋聖榮 | |
dc.contributor.author | Yi-Chia Lu | en |
dc.contributor.author | 盧乙嘉 | zh_TW |
dc.date.accessioned | 2021-06-17T03:47:22Z | - |
dc.date.available | 2019-02-23 | |
dc.date.copyright | 2018-02-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-01-26 | |
dc.identifier.citation | Affek, H.P., Eiler, J.M., 2006. Abundance of mass 47 CO2 in urban air, car exhaust and human breath. Geochim. Cosmochim. Acta 70, 1–12. doi:10.1016/j.gca.2005.08.021
Affek, H.P., Matthews, A., Ayalon, A., Bar-Matthews, M., Yuval Burstyn, C., Zaarur, S., Zilberman, T., 2014. Accounting for kinetic isotope effects in Soreq Cave (Israel) speleothems. Geochim. Cosmochim. Acta 143, 303–318. doi:10.1016/j.gca.2014.08.008 Affek, H.P., Zaarur, S., 2014. Kinetic isotope effect in CO2 degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments. Geochim. Cosmochim. Acta 143. doi:10.1016/j.gca.2014.08.005 Alvis-Isidro, R.R., Solaña, R.R., D’Amore, F., Nuti, S., Gonfiantini, R., 1993. Hydrology of the Greater Tongonan geothermal system, Philippines as deduced from geochemical and isotopic data. Geothermics 22, 435–449. André-Mayer, A.-S., Leroy, J., Bailly, L., Chauvet, A., Marcoux, E., Grancea, L., Llosa, F., Rosas, J., 2002. Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. Miner. Depos. 37, 452–464. Aquilano, D., Otálora, F., Pastero, L., García-Ruiz, J.M., 2016. Three study cases of growth morphology in minerals: Halite, calcite and gypsum. Prog. Cryst. Growth Charact. Mater. 62, 227–251. doi:10.1016/j.pcrysgrow.2016.04.012 Bergman, S.C., Huntington, K.W., Crider, J.G., 2013. Tracing paleo fluid sources using clumped isotope thermometry of diagenetic cements along the Moab Fault,Utah. Am. J. Sci. 313, 490–515. doi:10.2475/05.2013.03 Bodnar R.J.,Reynolds T.J., Kuehn C.A. (1985) Fluid inclusion systematics in epithermal systems.in Society of Economic Geologists, Reviews in Economic Geology,2, Geology and Geochemistry of Epithermal Systems, B.R. Berger and P.M. Bethke, eds., 73-98. Broecker, W.S., 1963. A Preliminary Evaluation of Uranium Series Inequilibrium as a Tool for Absolute Age Measurement on Marine Carbonates. J. Geophys. Res. 68, 2817–2834. doi:10.1029/JZ068i009p02817 Burkhard, M., 1993a. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. J. Struct. Geol. 15, 351–368. doi:10.1016/0191-8141(93)90132-T Burkhard, M., 1993b. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. J. Struct. Geol. 15, 351–368. doi:10.1016/0191-8141(93)90132-T Burnham, C.W., Barnes, H.L., 1979. Magmas and Hydrothermal Fluids: Geochemistry of Hydrothermal Ore Deposits. New York. Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., Villanueva-Estrada, R.E., 2011. A model of boiling for fluid inclusion studies: Application to the Bola??os Ag-Au-Pb-Zn epithermal deposit, Western Mexico. J. Geochemical Explor. 110, 118–125. doi:10.1016/j.gexplo.2011.04.005 Chang, P.Y., Lo, W., Song, S.R., Ho, K.R., Wu, C.S., Chen, C.S., Lai, Y.C., Chen, H.F., Lu, H.Y., 2014. Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics 50, 91–100. doi:10.1016/j.geothermics.2013.09.014 Chen, C.S., 1982. A Simple Geological Model for Geothermal Systems In The Central Range of Taiwan. Trans. 3rd Circum-Pacific Energy Miner. Resour. Conf. 393–397. Chen, Y.G., Wu, W.S., Chen, C.H., Liu, T.K., 2001. A date for volcanic eruption inferred from a siltstone xenolith. Quat. Sci. Rev. 20, 869–873. doi:10.1016/S0277-3791(00)00047-0 Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., Asmersom, Y., 2000. The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 17–33. doi:10.1016/S0009-2541(99)00157-6 Cheng, H., Lawrence, E.R., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Calvin Alexander, E., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91. doi:10.1016/j.epsl.2013.04.006 Cheng, Y., 2014. Geochemical Characteristics of Groundwater in the Ilan Plain, Northeast Taiwan. Master’s thesis Natl. Taiwan Univ. 1–82. Chiang, C.W., Hsu, H.L., Chen, C.C., 2014. An Investigation of the 3D Electrical Resistivity Structure in the Chingshui Geothermal Area, NE Taiwan. Terr. Atmos. Ocean. Sci. 26, 269–281. doi:10.3319/TAO.2014.12.09.01(T) Chiang, S.C., Hu, J.Y., Chen, L.H., 1984. The Isotopic Geochemistry Of Water And Carbonate In Chingshui Geothermal Area. Min. Metall. 28, 73–79. Chu, J.B., Shieh, Y.N., 1981. Oxygen And Carbon Isotopes And Mineral Chemistry Of Metamorphic Rocks From The Nanao District, Eastern Taiwan. Semin. Plate Tectonics Metamorph. Geol. 583–630. Cruset, D., Cantarero, I., Travé, A., Vergés, J., John, C., 2016. Crestal graben fluid evolution during growth of the Puig-reig anticline (South Pyrenean fold and thrust belt). J. Geodyn. in press. doi:10.1016/j.jog.2016.05.004 Daëron, M., Blamart, D., Peral, M., Affek, H.P., 2016. Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chem. Geol. 442, 83–96. doi:10.1016/j.chemgeo.2016.08.014 Daëron, M., Guo, W., Eiler, J., Genty, D., Blamart, D., Boch, R., Drysdale, R., Maire, R., Wainer, K., Zanchetta, G., 2011. 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. Geochim. Cosmochim. Acta 75, 3303–3317. doi:10.1016/j.gca.2010.10.032 Dale, A., John, C.M., Mozley, P.S., Smalley, P.C., Muggeridg, A.H., 2014. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth Planet. Sci. Lett. 394, 30–37. doi:10.1016/j.epsl.2014.03.004 Domingo, C., Loste, E., Garc, J., Fraile, J., 2006. Calcite precipitation by a high-pressure CO2 carbonation route 36, 202–215. doi:10.1016/j.supflu.2005.06.006 Dong, G., Zhou, T., 1996. Zoning in the Carboniferous-Lower Permian Cracow epithermal vein system, central Queensland, Australia. Miner. Depos. 31, 210–224. European Geothermal Energy Council-EGEC(2010) http://www.egec.org/ Eurostat (2010) http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ Eiler, J.M., 2007. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262, 309–327. doi:10.1016/j.epsl.2007.08.020 Eiler, J.M., 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30, 3575–3588. doi:10.1016/j.quascirev.2011.09.001 Eiler, J.M., Schauble, E., 2004. 18O13C16O in Earth’s atmosphereitle. Geochim. Cosmochim. Acta 68, 4767–4777. doi:10.1016/j.gca.2004.05.035 Ernst, W.G., 1983. Mineral paragenesis in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. J. Metamorph. Geol. 1, 305–329. doi:10.1111/j.1525-1314.1983.tb00277.x Ferrill, D.A., Morris, A.P., Evans, M.A., Burkhard, M., Groshong, R.H., Onasch, C.M., 2004. Calcite twin morphology: A low-temperature deformation geothermometer. J. Struct. Geol. 26, 1521–1529. doi:10.1016/j.jsg.2003.11.028 Friedman, I. and O’Neil, J. R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. In: Data of Geochemistry, 6th edition. Geochemical Survey Professional Paper 440 – KK. pp. KK1–KK12. Furukawa, M., Tokuyama, H., Abe, S., Nishizawa, A., Kinoshita, H., 1991. Report on DELP 1988 cruises in the Okinawa trough, 2, Seismic reflection studies in the southwestern part of the Okinawa trough. Earthq. Res. Inst. Univ. Tokyo 66, 17–36. Geyh, M., 2000. Environmental Isotopes in the Hydrological Cycle. Vol 4, Principals and Applications. International Atomic Energy Agency. Ghosh, P., Adkins, J., Affek, H.P., Balta, B., Guo, W., Schauble, E.A., Schrag, D., Eiler, J.M., 2006. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456. doi:10.1016/j.gca.2005.11.014 Giggenbach, W.F., 1989. The chemical and isotopic position of the Ohaaki Field within the Taupo volcanic zone. Proc. New Zeal. Geotherm. Work. 81–88. Griffiths, L., Heap, M.J., Wang, F., Daval, D., Gilg, H.A., Baud, P., Schmittbuhl, J., Genter, A., 2016. Geothermal implications for fracture-filling hydrothermal precipitation. Geothermics 64, 235–245. doi:10.1016/j.geothermics.2016.06.006 Harvey, C.C., Browne, P.R.L., 1992. Note on the occurence and compositions of calcite from the Te Mihi sector of the Wairakei Geothermal System, New Zealand. Proc. New Zeal. Geotherm. Work. 345–350. Ho, G.R., Chang, P.Y., Lo, W., Liu, C.M., Song, S.R., 2014. New evidence of regional geological structures inferred from reprocessing and resistivity data interpretation in the Chingshui-Sanshing-Hanchi area of Southwestern Ilan County, NE Taiwan. Terr. Atmos. Ocean. Sci. 25, 491–504. doi:10.3319/TAO.2014.01.24.01(TT) Hsiao, P.T., Chiang, S.C., 1979. Geology and Geothermal System of the Chingshui-Tuchang Geothermal Area, Ilan, Taiwan. Pet. Geol. Taiwan 16, 205–213. Huang, S.T., Chuang, K.C., 1986. Study of alteration minerals and hydrothermal system in Chingshui geothermal field. Pet. Eng. Taiwan 27, 181–210. Hurwitz, S., Goff, F., Janik, C.J., Evans, W.C., Counce, D.A., Sorey, M.L., Ingebritsen, S.E., 2003. Mixing of magmatic volatiles with groundwater and interaction with basalt on the summit of Kilauea Volcano, Hawaii. J. Geophys. Res. 2028–2039. doi:10.1029/2001JB001594 ITRI, 2012. Development of Sustainable Technologies for Traditional and Deep Geothermal Energy (3/4). (Chinese content) ITRI, 2011. Development of Sustainable Technologies for Traditional and Deep Geothermal Energy (2/4). (Chinese content) Iwatsuki, T., Satake, H., Metcalfe, R., Yoshida, H., Hama, K., 2002. Isotopic and morphological features of fracture calcite from granitic rocks of the Tono area, Japan: A promising palaeohydrogeological tool. Appl. Geochemistry 17, 1241–1257. doi:10.1016/S0883-2927(01)00129-9 John, C.M., Bowen, D., 2016. Community software for challenging isotope analysis: First applications of “Easotope” to clumped isotopes. Rapid Commun. Mass Spectrom. 30, 2285–2300. doi:10.1002/rcm.7720 Jones, B., Peng, X., 2012. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi. Spring Rehai geothermal area, Tengchong, Yunnan Province, China. Sediment. Geol. 249–250, 45–62. doi:10.1016/j.sedgeo.2012.01.009 Kang, C.C., Chang, C.P., Siame, L., Lee, J.C., 2015. Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. J. Asian Earth Sci. 105, 408–417. doi:10.1016/j.jseaes.2015.02.013 Kele, S., Breitenback, S.F.M., Capezzuoli, E., Meckler, N.A., Ziegler, M., Millan, I.M., Kluge, T., Deak, J., Hanselmann, K., John, C.M., Yan, H., Liu, Z., Bernasconi, S., 2015. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6-95˚C temperature range. Geochim. Cosmochim. Acta 168, 172–192. doi:10.1016/j.gca.2015.06.032 Keith, T. E. C, and Muffler, L. J. P., 1978, Minerals produced during cooling and hydro- thermal alteration of ash flow tuff from Yellowstone drill hole Y-5. J. Volcanol. Geotherm. Res., 3: 373-402. Kimura, M., 1985. Back-arc rifting in the Okinawa Trough. Mar. Pet. Geol. 2, 222–240. doi:10.1016/0264-8172(85)90012-1 Kluge, T., John, C.M., Jourdan, A.L., Davis, S., Crawshaw, J., 2015. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250°C temperature range. Geochim. Cosmochim. Acta 157, 213–227. doi:10.1016/j.gca.2015.02.028 Lahann, R.W., 1978. A chemical model for calcite crystal growth and morphology control. J. Sediment. Res. 48, 337–347. Lee, C.R., Jang, D., Han, Y.L., Wang, C.Y., 2016. Study on Production Test of IC21 Well in Chingshui Geothermal Field, Taiwan. Taiwan Min. Q. 68, 1–12. (Chinese content with English abstract) Lee, H.F., Yang, T.F., Lan, T.F., Song, S.R., Tsao, S.J., 2005. Fumarolic Gas Composition of the Tatun Volcano Group, Northern Taiwan. Terr. Atmos. Ocean. Sci. 16, 843–864. Li, R., Dong, S., Lehrmann, D., Duan, L., 2013. Tectonically driven organic fluid migration in the Dabashan Foreland Belt: Evidenced by geochemistry and geothermometry of vein-filling fibrous calcite with organic inclusions. J. Asian Earth Sci. 75, 202–212. doi:10.1016/j.jseaes.2013.07.026 Lin, C.W., Lin, W.H., 1995. Explanatory Text of the Geologic Map of Taiwan Sanshin. Sheet 15, Cent. Geol. Surv. MOEA,Taiwan. (Chinese content) Lin, J.J., 2000. Study on the Geothermal Power Development of Ching-shui at Ilan Prefecture. J. Pet. Mar. 36, 29–37. (Chinese content with English abstract) Liu, C.M., Yeh, E.C., Sun, T.H., Lin, S.T., Song, S.R., 2013. The geothermal phenomena and core description of Chingshui geothermal field. Western Pacific Earth Sciences, Vol.13, 59-80. (Chinese content with English abstract) Liu, C.M, Song, S.R., Lu, Y.C., 2011. Prospects of Geothermal Resources in Taiwan on the Base of Surface Silica Heat Flow. Western Pacific Earth Sciences, Vol.11, 31-48. (Chinese content with English abstract) Liu, H.F., 2013. Study of microseismicity and traveltime tomography in the Chingshui geothermal area, Master’s thesis of National Taiwan University. Liu, K.K., Yui, T.F., Shieh, Y.N., Chiang, S.C., Chen, L.H., Ho, J.Y., 1982. The C H O isotopic study in Chingshui Geothermal Field, Ilan, Academia Sinica Institude of Earth Sciences report. Liu, K.K., Yui, T.F., Shieh, Y.N., Chiang, S.C., L.H., C., Ho, J.Y., 1990. Hydrogen and oxygen isotope compositions of meteoric and thermal waters from the Chingshui geothermal area, northeastern Taiwan. Proc. Geol. Soc. China 33, 143–165. Liu, K.K., Yui, T.F., Shieh, Y.N., Chiang, S.C., L.H., C., Ho, J.Y., 1986. Oxygen and Carbon Isotope Studies of Carbonate Minerals from the Deep Well CPC-CS-16T in the Chingshui Geothermal Field, Taiwan. Pet. Geol. Taiwan 22, 69–84. Luetkemeyer, P.B., Kirschner, D.., Huntington, K.W., Chester, J.S., Chester, F.M., Evans, J.P., 2016. Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole. Tectonophysics. doi:10.1016/j.tecto.2016.05.024 Lu, Y.C., Song, S.R., Wang, P.L., Wu, C.C., Mii, H.S., MacDonald, J., Shen, C.C., John, C.M., 2017. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. J. Asian Earth Sci. doi:10.1016/j.jseaes.2017.03.004 Luetkemeyer, P.B., Kirschner, D.., Huntington, K.W., Chester, J.S., Chester, F.M., Evans, J.P., 2016. Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole. Tectonophysics. doi:10.1016/j.tecto.2016.05.024 MacDonald, J., John, C., Girard, J.-P., 2016. Testing clumped isotopes as a reservoir characterisation tool: a comparison with fluid inclusions in a dolomitised sedimentary carbonate reservoir buried to 2-4 km. Geol. Soc. London. doi:in press Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration. J. Geochemical Explor. 114, 20–35. doi:10.1016/j.gexplo.2011.12.001 Moore, C.H., Wade, W.J., 2013. Carbonate Diagenesis: Introduction and Tools, in: Carbonate Reservoirs. Elsevier Inc. Chapters , pp. 1–392. Navigant Consu (2013) http://www.navigant.com/ O’Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51, 5547–5558. doi:10.1063/1.1671982 Passey, B.H., Henkes, G.A., 2012. Carbonate clumped isotope bond reordering and geospeedometry, Earth Planet. Sci. Lett., 351–352, pp. 223-236. doi.org/10.1016/j.epsl.2012.07.021 Pei, Q., Zhang, S., Santosh, M., Cao, H., Zhang, W., Hu, X., Wang, L., 2017. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China. Ore Geol. Rev. 83, 174–190. doi:10.1016/j.oregeorev.2016.12.022 Phillips, G.N., 1993. Metamorphic fluids and gold. Mineral. Mag. 57, 365–374. Richards, D.A., Dorale, J.A., 2003. Uranium-series chronology and environmental applications of speleothems, In Uranium. ed. Mineralogical Society of America, Washington, DC. Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. doi:10.1016/0009-2541(94)00097-R Schauer, A.J., Kelson, J., Saenger, C., Huntington, K.W., 2016. Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry. Rapid Commun. Mass Spectrom. doi:10.1002/rcm.7743 Shen, C.C., Cheng, H., Edwards, R.L., Moran, S.B., Edmonds, H.N., Hoff, J.A., Thomas, R., 2003. Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Anal. Chem. 75, 1075–1079. doi:10.1021/ac026247r Shen, C.-C., Lawrence Edwards, R., Cheng, H., Dorale, J.A., Thomas, R.B., Bradley Moran, S., Weinstein, S.E., Edmonds, H.N., 2002. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem. Geol. 185, 165–178. doi:10.1016/S0009-2541(01)00404-1 Shen, C.C., Wu, C.C., Cheng, H., Lawrence Edwards, R., Hsieh, Y.T., Gallet, S., Chang, C.C., Li, T.Y., Lam, D.D., Kano, A., Hori, M., Spötl, C., 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim. Cosmochim. Acta 99, 71–86. doi:10.1016/j.gca.2012.09.018 Shenton, B.J., Grossman, E.L., Passey, B.H., Henkes, G.A., Becker, T.P., Laya, J.C., Perez-Huerta, A., Becker, S.P., Lawson, M., 2015. Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. Geol. Soc. Am. Bull. doi:10.1130/B31169.1 Sibuet, J.C., Deffontaines, B., Hsu, S.K., Thareau, N., Formal, T.P.L., Liu, C.S., Party, A., 1998. Okinawa trough backarc basin:Early tectonic and magatic evolution. J. Geophys. Res. 103, 245–267. doi:10.1029/98JB01823 Simmons, S.F., Christenson, B.W., 1994. Origins of calcite in a boiling geothermal system. Am. J. Sci. 294, 361–400. Song, S.R., 2012. National Energy Program: The Study of Chingshui Geothermal Field(3/3), National Science Council 2012-Final report (NSC 101-3113-M-002 -001). Su, F., 1978. Resistivity survey in the Chingshui prospect , I-Lan,Taiwan. Pet. Geol. ofTaiwan 15, 255–264. Sumner, K.K., Camp, E.R., Huntington, K.W., Cladouhos, T.T., M., U., 2015. Assessing Fracture Connectivity using Stable and Clumped Isotope Geochemistry of Calcite. Fortieth Work. Geotherm. Reserv. Eng. Stanford Univ. Sumner, K.K., Camp, E.R., Huntington, K.W., Cladouhos, T.T., M., U., 2015. Assessing Fracture Connectivity using Stable and Clumped Isotope Geochemistry of Calcite. Fortieth Work. Geotherm. Reserv. Eng. Stanford Univ. Sun, T.H., Yeh, E.C., 2013. Study of Stress State around the Chinshui Geothermal District of Ilan Area, Taiwan. National Taiwan Normal University. (Chinese content with English abstract) Tai-power , 2017 http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13 Taylor, H.P., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 69, 843–883. doi:10.2113/gsecongeo.69.6.843 Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265. doi:10.1029/95RG00262 Tong, L.T., Ouyang, S., Guo, T.R., Lee, C.R., Hu, K.H., Lee, C.L., 2008. Insight into the geothermal structure in Chingshui, Ilan, Taiwan. Terr. Atmos. Ocean. Sci. 19, 413–424. doi:10.3319/TAO.2008.19.4.000 Tong, P.J., Luo, S.C., Yang, J.S., 1978. Subsurface Geological Report of the CPC-CS-13T Geothermal Well in the Chingshui Geothermal District, I-Lan. CPC report. Tripati, A.K., Eagle, R.A., Thiagarajan, N., Gagnon, A.C., Bauch, H., Halloran, P.R., Eiler, J.M., 2010. 13C–18O isotope signatures and “clumped isotope” thermometry in foraminifera and coccoliths. Geochim. Cosmochim. Acta 74, 5697–5717. doi:10.1016/j.gca.2010.07.006 Tseng, C.S., 1978. Geology and Geothermal Occurrence of the Chingshui and Tuchang Districts, Ilan. Pet. Geol. Taiwan 15, 11–23. Tulloch, A.J., 1982. Mineralogical observations on carbonate scaling in geothermal wells at Kawerau and Broadlands: New Zealand Geothermal workshop, 4th, Proceedings p. 131-134. Turi, B., Taylor, H.P., 1976. Oxygen isotope studies of potassic volcanic rocks of the Roman Province, Central Italy. Mineral. Petrol. 55, 1–31. doi:10.1007/BF00372752 Wallin, B., Peterman, Z., 1999. Calcite fracture fillings as indicators of paleohydrology at È spo Laxemar at the A È Hard Rock Laboratory , southern. Appl. Geochemistry 14. Wang, P.L., Wu, J.J., Yeh, E.C., Song, S.R., Chen, Y.G., Lin, L.H., 2010. Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan. Terra Nov. 22, 251–256. doi:10.1111/j.1365-3121.2010.00940.x Wu, Y.J., Chang, B.T., 1976. The geology of the Chingshui and Tuchang geothermal area and surrounding region. Min. Technol. 14, 484–489. Yang, T.F., Ho, H.H., Hsieh, P.S., Lin, N.J., Chen, Y.G., Chen, C.H., 2003. Compositions and sources of fumarolic gases from Tatun Volcano Group, North Taiwan. J. Nat. Park 13, 127–156. Yang, T.F., Lan, T.F., Lee, H.F., Fu, C.C., Chuang, P.C., Lo, C.H., Chen, C.H., Chen, C.T.A., Lee, C.S., 2005. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem. J. 39, 469–480. doi:10.2343/geochemj.39.469 Yardley, B.W.D., Cleverley, J.S., 2013. The role of metamorphic fluids in the formation of ore deposits, Ore Deposits in an Evolving Earth. Geological Society, London. doi:10.1144/SP393.5 Yeh, E.C., Sun, T.H., Lin, S.T., Lee, W.C., Lin, W., Wu, Y.M., Wang, T.T., Song, S.R., Lin, W., 2013. Investigation of Relationship between In-Situ Stress and Fluid Conduits from Chinshui Geothermal Area, NE Taiwan, in: AGU Fall Meeting. p. H51D–1218. Yeh, Y.H., Lin, C.H., Roecker, S.W., 1989. A Study Of Upper Crustal Structures Beneath Northeastern Taiwan: Possible Evidence Of The Western Extension Of Okinawa Trough. Proc. Geol. Soc. China 32, 139–156. Yu, S.B., Tsai, Y.B., 1979. Geomagnetic anomalies of the Ilan plain, Taiwan. Pet. Geol. Taiwan 16, 19–27. Yui, T.F., Lan, C.Y., 1991. Isotopic Compositions of Tananao Marble in the Tungao Area. Spec. Publ. Cent. Geol. Surv. 5, 161–171. Yui, T.F., Liu, K.K., Shieh, Y.N., 1993. Stable isotope systematics of argillite/slate from a deep well in the Chingshui geothermal field, Taiwan. Chem. Geol. 103, 181–191. doi:10.1016/0009-2541(93)90300-8 Verhoogen J., Turner F.J., Weiss L.E., Wahrhaftig C., and Fyfe W.S., 1970. The Earth, an Introduction to Physical Geology. Holt, Rinehart and Winston, New York. Zaarur, S., Olack, G., Affek, H.P., 2011. Paleo-environmental implication of clumped isotopes in land snail shells. Geochim. Cosmochim. Acta 75, 6859–6869. doi:10.1016/j.gca.2011.08.044 Zhang, K., Lee, B., Ling, L., Wang, Y., Guo, T., Liu, C., Ouyang, S., 2015. Numerical Evaluation for Production Performance of Chingshui Geothermal Reservoir , Taiwan, Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015, 19–25. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70170 | - |
dc.description.abstract | 宜蘭清水地熱曾經建立台灣第一座地熱發電廠,從1960年代以來鑽鑿超過21口井,因而累積許多地質、地球物理探測和地球化學的資料。然而由於全區皆是厚層的廬山層板岩,缺乏地層對比的依據加上構造複雜,詳細的熱源以及主要的導水裂隙方向至今仍有爭議。
利用清水地熱區的野外斷層帶附近和岩芯的方解石脈以及井內的結垢,以分子同位素溫度計和液包體溫度計獲得結晶溫度,結合碳氧同位素值來計算原水並推測清水地熱熱源的來源。清水地熱的井內結垢其原水的氧同位素值為-5.8±0.8 ‰ VSMOW是天水成分;然而清水野外斷層帶附近的方解石脈計算後的原水氧同位素值介在-1.0±1.6 ‰ 到10.0±1.3 ‰ VSMOW是岩漿水或變質水成分。因此根據同位素地球化學資料、大地電磁探測法和微震資料,我們認為清水地熱有兩個熱水儲集層,斷層帶的方解石脈來自深部的高溫儲集層,為岩漿水或變質水成分並有大理岩脫碳作用;而地熱電廠所抽取的熱水則來自淺部的儲集層,為天水被間接加熱形成。 清水第21號井內岩芯內方解石晶型有刀刃狀、菱面晶體以及塊狀。刀刃狀的方解石指示其生長於約165℃ 快速逸氣沸騰的環境,計算後原水的氧同位素值為-6.8 ‰ 至 -10.2 ‰ VSMOW;菱面晶體方解石生長在約180℃ 離子濃度低的天水;塊狀方解石常常和石英交錯生長,同位素顯示其原水是天水和岩漿水以不同比例混合,其計算後的原水氧同位素值可達1.5±0.7 ‰ VSMOW。由這些資料可以發現刀刃狀方解石和菱面晶體方解石的原水與地熱電廠使用的熱水氧同位素值接近,這些岩脈的主要方向為北偏東10度向東傾70度,也就可能是現今主要的清水地熱裂隙導水的方向。 | zh_TW |
dc.description.abstract | The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies with more than 21 drilling wells have been performed since 1960s. However, there are still controversies regarding the heat and fluid sources and the main conduits due to the tectonically complicated geological setting.
To clarify the heat and fluid sources, the calcite scaling from production wells and veins from outcrops and cores were collected to analyze clumped isotopes and fluid inclusions for temperature measurements and carbon and oxygen isotopic compositions, then combined both data to calculate the 18O values of the source fluids. Two populations of 18O values were recognized: -5.8±0.8 ‰ VSMOW from scaling in the wells and -1.0±1.6 ‰ to 10.0±1.3 ‰ VSMOW from the calcite veins of outcrops, which are indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, two-reservoir model has been proposed: One is the shallow reservoir with fluids from meteoric water to provide the thermal water for scaling depositions inside the production wells, while the deep one supplies magmatic fluids mixing with deep marble decarbonization to precipitate the calcite veins near fault zones. Three types of calcite crystal morphologies have been identified in the veins of the cores of well IC-21: bladed, rhombic and massive crystals. Bladed calcites are generated via degassing under boiling conditions with a precipitation temperature of ~165℃ and calculated δ18O value of -6.8 ‰ to -10.2 ‰ VSMOW for the thermal water. Rhombic calcites grow in low concentration Ca2+ and CO32- meteoric fluids and precipitate at approximately ~180℃. Finally, massive calcites are characterized by co-precipitation with quartz in the mixing zone of meteoric water and magmatic or metamorphic fluids with calculated δ18O value of up to 1.5±0.7 ‰ VSMOW. Furthermore, the scaling and hot fluids at a nearby pilot geothermal power plant confirm a meteoric origin. Based on these observations, we propose that the current orientations of the main conduits for geothermal fluids are oriented at N10°E with a dip of 70°E. This result provides the basic information needed for deploying production and injection wells in future developments of the geothermal power plant in this region. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:47:22Z (GMT). No. of bitstreams: 1 ntu-107-D00224007-1.pdf: 4824211 bytes, checksum: a6c13f736a619dc22066b1499b3a1772 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Heat Source 5 1.2 Conduit orientations 7 1.3 Formation Scaling 8 Chapter 2 Background 10 2.1 Geological setting 10 2.2 Water geochemistry 15 2.3 Overview of the Pilot Chingshui Geothermal power plant 16 Chapter 3 Materials and Analytical Methods 18 3.1 Materials 18 3.1.1 Scalings 18 3.1.2 Outcrop samples 19 3.1.3 IC-21 samples 19 3.2 Analytical Methods 20 3.2.1 Scanning Electron Microscope and X-ray diffraction analysis 20 3.2.2 Carbon and oxygen isotopic analyses 20 3.2.3 Clumped isotope analysis 21 3.2.4 Fluid inclusion thermometry 23 3.2.5 U-Th dating 23 Chapter 4 Results 24 4.1 Mineral assemblage and crystal morphology of veins 24 4.1.1 Mineral assemblage of scaling and outcrop veins 24 4.1.2 Mineral assemblage, crystal morphology and orientation of IC-21 25 4.2 Carbon and oxygen isotopic analyses 29 4.3 Clumped isotope analysis 32 4.4 Fluid inclusion thermometry 33 4.5 Vein carbonate ages 34 Chapter 5 Discussions 36 5.1 Formation of crystal morphology in IC-21 36 5.1.1 Bladed calcite 36 5.1.2 Rhombic calcite 37 5.1.3 Massive calcite 38 5.2 Crystal forming temperature 39 5.2.1 Clumped-isotope thermometry in geothermal systems 39 5.2.2 Crystal forming temperature of IC-21 41 5.3 Isotopic data and fluid sources 42 5.3.1 Two End Members for Fluid Sources 42 5.3.2 Magmatic or metamorphic fluid source for the deeper fluid reservoir? 48 5.3.3 Isotopic data and fluid sources of IC-21 53 5.4 Conduit orientations for thermal fluids 55 5.5 Formation of scales 59 Chapter 6 Conclusions 61 Reference 63 Appendix A. Supplementary Data 1 77 Appendix A. Supplementary Data 2 79 Appendix A. Supplementary Data 3 80 Appendix A. Supplementary Data 4 81 | |
dc.language.iso | en | |
dc.title | 清水地熱區的熱源與流體演化 | zh_TW |
dc.title | The Evolutions of Heat Sources and Thermal Fluids in the Chingshui Geothermal Field | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曹恕中,郭力維,陳惠芬,葉恩肇,黃旭燦 | |
dc.subject.keyword | 清水地熱,分子同位素,岩漿源,液包體,方解石晶型, | zh_TW |
dc.subject.keyword | Chingshui geothermal field,clumped isotopes,magmatic fluid,fluid inclusions,calcite crystal morphologies, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU201800178 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-01-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。