請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70163
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王湉妮 | zh_TW |
dc.contributor.advisor | Tien-Ni Wang | en |
dc.contributor.author | 張亭薇 | zh_TW |
dc.contributor.author | Ting-Wei Chang | en |
dc.date.accessioned | 2021-06-17T03:46:59Z | - |
dc.date.available | 2023-11-30 | - |
dc.date.copyright | 2018-03-29 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Acar, G., Altun, G. P., Yurdalan, S., & Polat, M. G. (2016). Efficacy of neurodevelopmental treatment combined with the Nintendo® Wii in patients with cerebral palsy. Journal of physical therapy science, 28(3), 774.
Bonnechere, B., Jansen, B., Omelina, L., Degelaen, M., Wermenbol, V., Rooze, M., & Jan, S. V. S. (2014). Can serious games be incorporated with conventional treatment of children with cerebral palsy? A review. Research in developmental disabilities, 35(8), 1899-1913. Bozgeyikli, G., Bozgeyikli, E., & İşler, V. (2013). Introducing tangible objects into motion controlled gameplay using Microsoft® Kinect TM. Computer Animation and Virtual Worlds, 24(3-4), 429-441. Bufton, A., Campbell, A., Howie, E., & Straker, L. (2014). A comparison of the upper limb movement kinematics utilized by children playing virtual and real table tennis. Human movement science, 38, 84-93. Chen, Y.-P., Kang, L.-J., Chuang, T.-Y., Doong, J.-L., Lee, S.-J., Tsai, M.-W., . . . Sung, W.-H. (2007). Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Physical therapy, 87(11), 1441-1457. Chen, Y.-p., Lee, S.-Y., & Howard, A. M. (2014). Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatric Physical Therapy, 26(3), 289-300. Colver, A., Fairhurst, C., & Pharoah, P. O. D. (2014). Cerebral palsy. The Lancet, 383(9924), 1240-1249. doi:10.1016/s0140-6736(13)61835-8 de Mello Monteiro, C. B., Massetti, T., da Silva, T. D., van der Kamp, J., de Abreu, L. C., Leone, C., & Savelsbergh, G. J. (2014). Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Research in developmental disabilities, 35(10), 2430-2437. de Moura, R. C. F., Almeida, C. S., Dumont, A. J. L., Lazzari, R. D., Lopes, J. B. P., de Carvalho Duarte, N. A., . . . Oliveira, C. S. (2016). Kinematic upper limb evaluation of children and adolescents with cerebral palsy: a systematic review of the literature. Journal of physical therapy science, 28(2), 695. Eliasson, A.-C., Krumlinde-Sundholm, L., Rösblad, B., Beckung, E., Arner, M., Öhrvall, A.-M., & Rosenbaum, P. (2006). The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Developmental medicine and child neurology, 48(7), 549-554. Gibson, J. J. (2014). The ecological approach to visual perception: classic edition. New York, NY: Psychology Press. Gonsalves, L., Campbell, A., Jensen, L., & Straker, L. (2015). Children with developmental coordination disorder play active virtual reality games differently than children with typical development. Physical therapy, 95(3), 360-368. Hoshi, K., & Waterworth, J. (2009). Tangible presence in blended reality space. Paper presented at the PRESENCE 2009. Krause, F.-l., Israel, J. H., Neumann, J., & Feldmann-Wustefeld, T. (2007). Usability of hybrid, physical and virtual objects for basic manipulation tasks in virtual environments. Paper presented at the 2007 IEEE Symposium on 3D User Interfaces. Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71(7), 1439-1459. Levin, M. F., Weiss, P. L., & Keshner, E. A. (2015). Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Physical therapy, 95(3), 415-425. Lok, B., Naik, S., Whitton, M., & Brooks, F. P. (2003). Effects of handling real objects and avatar fidelity on cognitive task performance in virtual environments. Paper presented at the Virtual Reality, 2003. Proceedings. IEEE. Ma, H.-I., Hwang, W.-J., Wang, C.-Y., Fang, J.-J., Leong, I.-F., & Wang, T.-Y. (2012). Trunk–arm coordination in reaching for moving targets in people with Parkinson’s disease: Comparison between virtual and physical reality. Human movement science, 31(5), 1340-1352. Merzenich, M. M., Van Vleet, T. M., & Nahum, M. (2014). Brain plasticity-based therapeutics. Miller, S., & Reid, D. (2003). Doing play: competency, control, and expression. CyberPsychology & Behavior, 6(6), 623-632. Muratori, L. M., Lamberg, E. M., Quinn, L., & Duff, S. V. (2013). Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy, 26(2), 94-103. Murphy, N., & Such-Neibar, T. (2003). Cerebral palsy diagnosis and management: the state of the art. Current problems in pediatric and adolescent health care, 33(5), 146-169. Novak, I., Mcintyre, S., Morgan, C., Campbell, L., Dark, L., Morton, N., . . . Goldsmith, S. (2013). A systematic review of interventions for children with cerebral palsy: state of the evidence. Developmental Medicine & Child Neurology, 55(10), 885-910. Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M., Damiano, D., . . . Jacobsson, B. (2007). A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl, 109(suppl 109), 8-14. Sandlund, M., Domellöf, E., Grip, H., Rönnqvist, L., & Häger, C. K. (2014). Training of goal directed arm movements with motion interactive video games in children with cerebral palsy–A kinematic evaluation. Developmental neurorehabilitation, 17(5), 318-326. Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis (Vol. 4): Human kinetics Champaign, IL. Spina-Caza, L. (2010). Objects in play: virtual environments and tactile learning. Paper presented at the Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction. Tanaka, K., Parker, J., Baradoy, G., Sheehan, D., Holash, J. R., & Katz, L. (2012). A comparison of exergaming interfaces for use in rehabilitation programs and research. Loading... 6(9). Teo, W. P., Muthalib, M., Yamin, S., Hendy, A. M., Bramstedt, K., Kotsopoulos, E., . . . Ayaz, H. (2016). Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation?–A narrative review of the literature. Frontiers in Human Neuroscience, 10, 284. Wang, C.-Y., Hwang, W.-J., Fang, J.-J., Sheu, C.-F., Leong, I.-F., & Ma, H.-I. (2011). Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets. Archives of physical medicine and rehabilitation, 92(8), 1238-1245. Waterworth, J., & Riva, G. (2014). Feeling present in the physical world and in computer-mediated environments. Houndmills, England: Palgrave Macmillan. Weiss, P. L. T., Tirosh, E., & Fehlings, D. (2014). Role of virtual reality for cerebral palsy management. Journal of child neurology, 0883073814533007. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70163 | - |
dc.description.abstract | 腦性麻痺為常見造成孩童功能缺損的疾病之一,常伴隨有動作、姿勢、認知、知覺等方面的功能缺損。其成因來自腦部發展時先天的受損、病變、傷害等,造成發展性障礙。近年來,許多研究者與臨床工作者認為虛擬實境 (virtual reality) 能夠作為腦性麻痹孩童的復健工具,因為虛擬實境可提供大量的感覺刺激,並藉由有趣的遊戲情境提升孩童復健動機,使他們不會抗拒高強度且重複的練習。過去研究顯示,腦性麻痺孩童接受虛擬實境介入後,動作技巧上有顯著的進步,然而這些動作上進步似乎無法直接轉化到物理實境 (physical reality) 之中。造成轉化效果不彰的最主要因素,可能在於虛擬實境缺乏實際物品的觸動覺回饋 (haptic feedback)。為解決此問題,研究者將實際物品加進虛擬實境之中,形成一種新的型態--混合實境 (hybrid reality)。過去研究認為,混合實境可提升一般發展孩童的現實感 (presence),促使他們用較為自然的動作模式完成任務,減少怪異、不符常理的代償動作出現。然而,腦性麻痺孩童有先天動作功能上的限制,混合實境是否能作為有效之復健工具並加強轉化效果,還需進一步的探討。
這個研究的目的在於探討腦性麻痺孩童在虛擬實境、物理實境及混合實境中的差異,包含動作覺、功能表現與主觀經驗感受,同時也有一組一般發展孩童作為對照。總共有12位腦性麻痺孩童與9位一般發展孩童參與此研究,每位受試者都須完成三種情境中的打鼓任務。執行任務時,受試者的動作會被紅外線攝影機捕捉並錄下,同時遊戲系統會記錄功能性表現。每一個情境結束後,受試者都須填答主觀經驗感受問卷,最後進行三種情境的排名。 根據研究結果,我們發現混合實境中添加的實際物品--鼓棒--對受試者的動作參數有正面影響,與虛擬實境相比,動作更趨近物理實境。與物理實境相比,腦性麻痺孩童的患側手在虛擬實境中的打鼓動作時間及動作路徑較長,且動作較不平順,但最大速度較大。混合實境則有效降低其動作速度及動作距離,並且使腦性麻痺孩童的患側手以較平順的模式完成任務。一般發展孩童的非慣用手在虛擬實境中也呈現較長的動作路徑及較快的動作速度,但健側手並未出現此差異。由此推論,任務的難度會影響加入觸動覺回饋的效果。此外,一般發展孩童雙手的手腕在虛擬實境中伸展 (extension) 的角度較另外兩種實境小,顯示握有實際鼓棒對關節動作的顯著影響。 功能表現部分,腦性麻痺孩童在物理實境的準確度比另外兩種實境高,但一般發展孩童在三種情境中無顯著差異。這表示除了動作功能外,擊鼓準確度也受到腦性麻痺孩童先天視知覺功能缺損的影響。 受試者主觀經驗感受部分,腦性麻痺孩童認為混合實際可以提升控制感,握有鼓棒也讓他們感覺較貼近一般的打鼓活動。但是,他們也認為以混合實境執行任務,比另外兩種情境較為無趣及困難,可能使他們動機降低。對於一般發展孩童來說,握住鼓棒的要求僅提升任務的自然度。 根據以上結果,混合實境作為虛擬實境與物理實境的結合,可同時涵蓋兩者的優點。但由於對動作功能要求較高,在應用於腦性麻痺孩童復健計劃時,應審慎調整任務難度,符合孩童能力,才能在良好動機下進行有效的訓練。 | zh_TW |
dc.description.abstract | Cerebral Palsy (CP) is described as a primary disorders showing deficits in movement, posture, cognitive and other abilities originated from a non-progressive disturbances in a developing brain. Virtual reality (VR) system has been considered as a potential rehabilitation tool in recent years for its high intensity, multisensory stimulations, and enjoyable gaming environments. Although VR rehabilitation of children with CP showed strong effects on motor skills, the improvements on motor abilities showed no direct transfer from VR to physical reality (PR). The loss of haptic feedback in virtual environments may be crucial. Adding physical objects into VR games, in terms of hybrid reality (HR), may be a solution to combine both advantages of two realities; however, whether HR games are potential for children CP to transfer attained motor skills from VR to PR or not should be further investigated.
This study aimed to investigate the differences of kinematics and functional motor performance among VR, PR and HR conditions in children with hemiplegic CP as well as typically developing children (TDC). 12 children with CP and 9 TDC were recruited to execute a drum task presented in three different conditions: VR, HR and PR. The motor kinematics data was collected, and the functional performance was presented by the records in the gaming system. Participant’s experience was examined through a questionnaire. In this study, I found that the additional physical object in HR, in terms of the drumstick, had positive impact on the participants’ performance in kinematics variables. The affected hand of children with CP spent a longer time and longer movement path to hit the drum in VR condition with a less smooth movement, but the PV was higher in VR condition. These results showed that HR efficiently lowered down the speed of the movements, decreased the movement distance, and made children with CP hit the drum with a smoother pattern. Respecting to TDC, the non-dominant hand showed a longer and faster hand path under VR condition while no significant difference was found in the dominant hand. The result indicates that the difficulty of the task may influence the impact of haptic feedback. In additional, the angles of both hand wrists of TDC were less extended in VR than in HR and PR conditions, demonstrating the significant impact of holding a physical object in hand. As for the functional performance, children with CP showed a higher accuracy in PR condition than in both HR and VR conditions. TDC showed no difference of accuracy among three conditions. For participant’ subjective experience, children with CP reported that HR enhanced a sense of control, and the drumstick in hand improved the naturalness of the task. However, they also reported that the task in HR condition was less interesting and more difficult, which may lower their motivation. As for TDC, the ability acquired in HR condition had no impact on their enjoyment, but the physicality did enhance the sense of naturalness. According to the results, HR takes advantages of both VR and PR’s assets for rehabilitation, such as the flexibility of VR and tangibility of PR, but the task should be carefully altered to meet the capacity of children with CP for enhancing motivation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:46:59Z (GMT). No. of bitstreams: 1 ntu-107-R04429007-1.pdf: 1833815 bytes, checksum: c2089541baba70a25194e46f2dc67fc9 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Table of content
口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v Chapter 1 Introduction 1 1.1 The application of virtual reality for children with cerebral palsy 2 1.1.1 Cerebral Palsy 2 1.1.2 Virtual reality 3 1.1.3 Advantages of virtual reality games as rehabilitation tools 4 1.2 The limit of transfer effect from virtual reality to physical reality 7 1.2.1 The underlying theories of weak transfer 7 1.2.2 Differences between virtual and physical reality 8 1.3 The alternative selection: hybrid reality 11 1.3.1 Haptic feedback 11 1.3.2 Combining physical objects into virtual reality games 12 1.3.3 Cautions in children with CP playing hybrid reality games 14 1.4 Research gaps and the study purpose 14 1.4.1 Research gaps in current studies 15 1.4.2 The study purpose 15 Chapter 2 Method 18 2.1 Participants 18 2.2 Experimental set-up 18 2.3 Study design and procedure 20 2.4 Measurements 20 2.4.1 Primary outcome measures 20 2.4.2 Secondary outcome measures 22 2.4.3 General measures for basic function 23 2.5 Statistical analysis 24 Chapter 3 Results 25 3.1 Participants 25 3.2 Primary outcomes 25 3.2.1 Primary outcomes of children with hemiplegic CP 25 3.2.2 Primary outcomes of TDC 27 3.3 Secondary outcomes 28 3.3.1 Secondary outcomes of children with hemiplegic CP 28 3.3.2 Secondary outcomes of TDC 28 Chapter 4 Discussion 30 4.1 Primary outcomes 30 4.1.1 The movements of children with hemiplegic CP 30 4.1.2 The movements of the TDC group 33 4.1.3 The movement differences between two groups 35 4.2 Secondary outcomes 36 4.3 Hybrid reality as a rehabilitation tool 38 4.4 Limitation and future work 40 Chapter 5 Conclusion 42 References 56 Appendix 60 List of figures Figure 1 43 Figure 2 43 Figure 3-a 44 Figure 3-b 45 Figure 3-c 46 Figure 3-d 47 Figure 3-e 48 List of tables Table 1 49 Table 2-a 50 Table 2-b 51 Table 2-c 52 Table 2-d 53 Table 3 54 Table 4 55 | - |
dc.language.iso | en | - |
dc.title | 探討腦性麻痺孩童於虛擬實境、物理實境與混合實境三種情境中的表現差異 | zh_TW |
dc.title | Performance of Children with Cerebral Palsy Executing Tasks in Virtual Reality, Physical Reality and Hybrid Reality | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳顥齡;阮聖彰;黃湘涵 | zh_TW |
dc.contributor.oralexamcommittee | Hao-Ling Chen;Shanq-Jang Ruan;Hsiang-Han Huang | en |
dc.subject.keyword | 虛擬實境,混合實境,物理實境,觸動覺,現實感, | zh_TW |
dc.subject.keyword | virtual reality,hybrid reality,physical reality,haptic perception,presence, | en |
dc.relation.page | 61 | - |
dc.identifier.doi | 10.6342/NTU201800213 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-01-29 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 職能治療學系 | - |
顯示於系所單位: | 職能治療學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。