Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐牧群
dc.contributor.authorMeng-Hsiu Houen
dc.contributor.author侯孟秀zh_TW
dc.date.accessioned2021-06-17T03:46:23Z-
dc.date.available2018-02-23
dc.date.copyright2018-02-23
dc.date.issued2018
dc.date.submitted2018-01-29
dc.identifier.citation李美萱(2015)。電子佈告欄系統中的社會支持之研究-以批踢踢實業坊Womentalk板為例(未出版碩士論文)。世新大學資訊傳播學研究所,臺北市。
施文玲(2006)。社會交換理論之評析。網路社會學通訊期刊,52。檢自:http://www.nhu.edu.tw/~society/e-j/52/52-15.htm
張淳矞(2009)。以動態網絡分析探討網路社群口碑與購買態度之關係:以批踢踢nb_shopping板為例(未出版碩士論文)。國立交通大學傳播研究所,新竹市。
莊道明(1998)。從台灣學術網路使用調查解析網路虛擬社群價值觀。資訊傳播與圖書館學,5(1),52-61。
陳詩楹(2012)。中華傳播學刊的引用網絡分析:指數隨機圖模型與動態模型之取徑(未出版碩士論文)。國立交通大學傳播研究所,新竹市。
葉至誠(2008)。現代社會與公民素養。臺北市:秀威出版。
葉建亨、黃文楨(2011)。整合社會資本與社會交換理論探討虛擬社群知識分享意願。中華民國資訊管理學報,18(3),76-100。
蔡文輝(2006)。社會學理論。臺北市:三民。
Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403-412.
Abouzahra, M., & Tan, J. (2014, January). The effect of community type on knowledge sharing incentives in online communities: A meta-analysis. In System Sciences, 2014,HICSS. Proceedings of the 47th Annual Hawaii International Conference (pp. 1765-1773). IEEE.
Adamic, L. A., Zhang, J., Bakshy, E., & Ackerman, M. S. (2008, April). Knowledge sharing and yahoo answers: everyone knows something. In Proceedings of the 17th international conference on World Wide Web (pp. 665-674). Beijing: ACM.
Alexander, R. D. (1987). The biology of moral systems. London: Transaction Publishers.
Ardichvili, A., Maurer, M., & Wentling, T. (2005). Knowledge Sharing Through Online Communities of Practice: The Impact of Cultural Variations. Online Submission, 30(2), 685-692.
Ardichvili, A., Page, V., & Wentling, T. (2003). Motivation and barriers to participation in virtual knowledge-sharing communities of practice. Journal of knowledge management, 7(1), 64-77.
Arevalo, C. C. P., & Pabico, J. P. (2015). Preferential attachment in an internet-mediated human network. Philippine Computing Journal, 4(1), 31-35.
Armstrong, A., & Hagel, J. (2000). The real value of online communities. In E. Lesser, M. Fontaine & J. Slusher (Eds.), Knowledge and communities (pp. 85-95). London: Routledge.
Balasubramanian, S., & Mahajan, V. (2001). The economic leverage of the virtual community. International Journal of Electronic Commerce, 5(3), 103-138.
Bansal, S., Grenfell, B. T., & Meyers, L. A. (2007). When individual behaviour matters: homogeneous and network models in epidemiology. Journal of the Royal Society Interface, 4(16), 879-891.
Barabási, A. L. (2012). The network takeover. Nature Physics, 8(1), 14-16.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512.
Barabási, A. L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, 272(1), 173-187.
Blanchard, A. L., & Markus, M. L. (2004). The experienced sense of a virtual community: Characteristics and processes. Database for Advances in Information Systems, 35(1), 64-79.
Blau, P. M. (1964). Exchange and power in social life. London, UK: Transaction Publishers.
Bock, G. W., Zmud, R. W., Kim, Y. G., & Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS quarterly, 29(1), 87-111.
Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2013). Analyzing social networks. London: Sage.
Boyd, R., & Richerson, P. J. (1989). The evolution of indirect reciprocity. Social Networks, 11(3), 213-236.
Bravo, G. (2010). Voluntary contribution to public goods in mutual-help forums: reciprocity or group attachment?. Socio-Economic Review, 8(4),709-733.
Bravo, G., & Tamburino, L. (2008). The evolution of trust in non-simultaneous exchange situations. Rationality and Society, 20(1), 85-113.
Brodie, R. J., Ilic, A., Juric, B., & Hollebeek, L. (2013). Consumer engagement in a virtual brand community: An exploratory analysis. Journal of Business Research, 66(1), 105-114.
Burnett, Gary (2000). Information exchange in virtual communities: a typology. Information Research, 5(4). Retrieved from: http://informationr.net/ir/5-4/paper82.html
Capocci, A., Servedio, V. D., Colaiori, F., Buriol, L. S., Donato, D., Leonardi, S., & Caldarelli, G. (2006). Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia. Physical review E, 74, 036116, 1-6.
Carolan, B. V. (2008). The structure of educational research: The role of multivocality in promoting cohesion in an article interlock network. Social Networks, 30(1), 69-82.
Cass, S. (2016). The 2016 Top Programming Languages. IEEE Spectrum . Retrieved from: http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
Chen, C. J., & Hung, S. W. (2010). To give or to receive? Factors influencing members’ knowledge sharing and community promotion in professional virtual communities. Information & Management, 47(4), 226-236.
Cheung, C. M., Chiu, P. Y., & Lee, M. K. (2011). Online social networks: Why do students use facebook?. Computers in Human Behavior, 27(4), 1337-1343.
Chiu, C. M., Hsu, M. H., & Wang, E. T. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decision support systems, 42(3), 1872-1888.
Chung, J. Y., Buhalis, D., & Petrick, J. F. (2016). The Use of Social Network Analysis to Examine the Interactions between Locals and Tourists in an Online Community. In 2010 ttra International Conference Proceedings. Retrieved from Tourism Travel and Research Association: http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1590&context=ttra
Constant, D., Kiesler, S., & Sproull, L. (1994). What's mine is ours, or is it? A study of attitudes about information sharing. Information systems research, 5(4), 400-421.
Cross, R., Borgatti, S. P., & Parker, A. (2002). Making invisible work visible: Using social network analysis to support strategic collaboration. California management review, 44(2), 25-46.
Daniel, J. R., Santos, A. J., Peceguina, I., & Vaughn, B. E. (2013). Exponential random graph models of preschool affiliative networks. Social Networks, 35(1), 25-30.
Delva, W., Leventhal, G. E., & Helleringer, S. (2016). Connecting the dots: network data and models in HIV epidemiology. AIDS, 30(13), 2009-2020.
Emerson, R. M. (1976). Social exchange theory. Annual review of sociology, 2(1), 335-362.
Everett, M., & Borgatti, S. P. (2005). Ego network betweenness. Social networks, 27(1), 31-38.
Fang, Y. H., & Chiu, C. M. (2010). In justice we trust: Exploring knowledge-sharing continuance intentions in virtual communities of practice. Computers in Human Behavior, 26(2), 235-246.
Faraj, S., & Johnson, S. L. (2011). Network exchange patterns in online communities. Organization Science, 22(6), 1464-1480.
Faust, K., & Wasserman, S. (1993). Correlation and association models for studying measurements on ordinal relations. Sociological methodology, 23, 177-215.
Fernback, J. (1998). Notes toward a definition of cybercommunity. In S. Jones (Eds.), Doing internet research critical issues and methods for examining the net (chap. 10, 203-220). Thousand Oaks, CA: Sage.
Fisher, D., Smith, M., & Welser, H. T. (2006, January). You are who you talk to: Detecting roles in usenet newsgroups. In System Sciences, 2006. HICSS. Proceedings of the 39th Annual Hawaii International Conference on (pp. 1-10). IEEE.
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1(3), 215-239.
Gondal, N. (2011). The local and global structure of knowledge production in an emergent research field: An exponential random graph analysis. Social Networks, 33(1), 20-30.
Gu, B., Huang, Y., Duan, W., & Whinston, A. B. (2009). Indirect reciprocity in online social networks-a longitudinal analysis of individual contributions and peer enforcement in a peer-to-peer music sharing network. McCombs Research Paper Series No. IROM-06-09. Retrieved from SSRN: https://ssrn.com/abstract=1327759
Gusfield, J. R. (1975). Community: A critical response. NY: HarperCollins.
Hashim, K. F., Ahmad, A., & Shahranee, I. N. (2015). Continuous knowledge sharing: an exploratory study using online focus group technique. Advanced Science Letters, 21(6), 1822-1825.
Haythornthwaite, C. (2007). Social networks and online community. In A. N. Joinson (Eds.), The Oxford handbook of Internet psychology (chap. 9, pp. 121-137). Oxford ,UK: Oxford University Press.
He, R., & Zheng, T. (2015). GLMLE: graph-limit enabled fast computation for fitting exponential random graph models to large social networks. Social Network Analysis and Mining, 5(1), 1-19.
Head, J. G. (1972). Public goods and public policy. Public Finance, 17 (3), 197–219.
Heckathorn, D. D. (1996). The dynamics and dilemmas of collective action. American sociological review, 61(2), 250-277.
Heller, K. (1989). The return to community. American Journal of Community Psychology, 17(1), 1-15.
Hiltz, S. R., & Wellman, B. (1997). Asynchronous learning networks as a virtual classroom. Communications of the ACM, 40(9), 44-49.
Himelboim, I., & Han, J. Y. (2014). Cancer talk on twitter: community structure and information sources in breast and prostate cancer social networks. Journal of health communication, 19(2), 210-225.
Homans, G. C. (1958). Social behavior as exchange. American journal of sociology, 63(6), 597-606.
Hsu, M. H., Ju, T. L., Yen, C. H., & Chang, C. M. (2007). Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. International journal of human-computer studies, 65(2), 153-169.
Hunter, D. R., & Handcock, M. S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15(3), 565-583.
Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248-258.
Jin, B., Park, J. Y., & Kim, H. S. (2010). What makes online community members commit? A social exchange perspective. Behaviour & Information Technology, 29(6), 587-599.
Johnson, S. L., & Faraj, S. (2005). Preferential attachment and mutuality in electronic knowledge networks. International Conference on Information Systems. Retrieved from SSRN: https://ssrn.com/abstract=1697048
Johnson, S. L., Faraj, S., & Kudaravalli, S. (2014). Emergence of Power Laws in Online Communities_The Role of Social Mechanisms and Preferential Attachment. Mis Quarterly, 38(3), 795-808.
Jones, Q. (1997). Virtual‐Communities, Virtual Settlements & Cyber‐Archaeology: A Theoretical Outline. Journal of Computer-Mediated Communication, 3(3), 00-00. doi:10.1111/j.1083-6101.1997.tb00075.x
Kankanhalli, A., Tan, B. C., & Wei, K. K. (2005). Contributing knowledge to electronic knowledge repositories: an empirical investigation. MIS quarterly, 29(1), 113-143.
Knoke, D., & Yang, S. (2008). Social network analysis. Los Angeles, CA: Sage.
Koh, J., & Kim, Y. G. (2004). Knowledge sharing in virtual communities: an e-business perspective. Expert systems with applications, 26(2), 155-166.
Komorita, S. S., & Parks, C. D. (1995). Interpersonal relations: Mixed-motive interaction. Annual review of psychology, 46(1), 183-207.
Kosonen, M., Gan, C., Blomqvist, K., & Vanhala, M. (2012). Users' motivations and knowledge sharing in an online innovation community. In ISPIM Conference Proceedings (pp. 1-17). Manchester, UK: The International Society for Professional Innovation Management (ISPIM).
Lagemann, E. C. (1989). The plural worlds of educational research. History of Education Quarterly, 29(2), 185-214.
Lawrence, T. B. (1995 , August). Power and resources in an organizational community. In Annual Meeting of the Academy of Management Best Papers Proceedings, Vancouver, BC.
Lazar, J., & Preece, J. (1998). Classification schema for online communities. Americas Conference on Information Systems Proceedings, Baltimore, MD.
Lee, F. S., Vogel, D., & Limayem, M. (2002, January). Virtual community informatics: What we know and what we need to know. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference (pp. 2863-2872). IEEE.
Leskovec, J., & Mcauley, J. J. (2012). Learning to discover social circles in ego networks. In Advances in neural information processing systems (pp. 539-547). ACM.
Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information processing & management, 41(6), 1462-1480.
Lusher, D., Koskinen, J., & Robins, G. (2012). Exponential random graph models for social networks: Theory, methods, and applications. NY: Cambridge University Press.
Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56-63.
Milinski, M., Semmann, D., & Krambeck, H. J. (2002). Reputation helps solve the ‘tragedy of the commons’. Nature, 415(6870), 424-426.
Monge, P. (2012). Exponential Random Graph (ERG or p*) Models. Retrieved from Communication Networks, Annenberg School of Communication , University of Southern California: http://www.kateto.net/wp-content/uploads/2012/12/COMM%20645%20-%20ERGM.pdf
Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American sociological review, 69(2), 213-238.
Müller, C., Meuthrath, B., & Baumgraß, A. (2008). Analyzing Wiki-based Networks to Improve Knowledge Processes in Organizations. Journal of Universal Computer Science, 14(4), 526-545.
Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409.
Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 1291-1298.
Otte, E., & Rousseau, R. (2002). Social network analysis_a powerful strategy, also for the information sciences. Journal of information Science, 28(6), 441-453.
Pai, P., & Tsai, H. T. (2016). Reciprocity norms and information-sharing behavior in online consumption communities: An empirical investigation of antecedents and moderators. Information & Management, 53(1), 38-52.
Pan, Y., Xu, Y. C., Wang, X., Zhang, C., Ling, H., & Lin, J. (2015). Integrating social networking support for dyadic knowledge exchange: a study in a virtual community of practice. Information & Management, 52(1), 61-70.
Posey, C., Lowry, P. B., Roberts, T. L., & Ellis, T. S. (2010). Proposing the online community self-disclosure model: the case of working professionals in France and the UK who use online communities. European Journal of Information Systems, 19(2), 181-195.
Price, D. D. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American society for Information science, 27(5), 292-306.
Proferes, N. (2016). Web 2.0 user knowledge and the limits of individual and collective power. First Monday, 21(6). doi:10.5210/fm.v21i6.6793
Rafaeli, S., Ravid, G., & Soroka, V. (2004, January). De-lurking in virtual communities: a social communication network approach to measuring the effects of social and cultural capital. In System Sciences, 2004. HICSS.Proceedings of the 37th Annual Hawaii International Conference (pp. 1-10). IEEE.
Relun, A., Grosbois, V., Alexandrov, T., Sánchez-Vizcaíno, J. M., Waret-Szkuta, A., Molia, S., Etter E..M., & Martínez-López, B. (2017). Prediction of Pig Trade Movements in Different european Production systems Using exponential random graph Models. Frontiers in Veterinary Science, 4(27), 1-12.
Rheingold, H. (1993). The virtual community: Finding commection in a computerized world. Boston: Addison-Wesley.
Ridings, C. M., & Gefen, D. (2004). Virtual community attraction: Why people hang out online. Journal of Computer‐Mediated Communication, 10(1), 00-00. doi:10.1111/j.1083-6101.2004.tb00229.x
Ridings, C. M., Gefen, D., & Arinze, B. (2002). Some antecedents and effects of trust in virtual communities. The Journal of Strategic Information Systems, 11(3), 271-295.
Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social networks, 29(2), 173-191.
Rothaermel, F. T., & Sugiyama, S. (2001). Virtual internet communities and commercial success: individual and community-level theory grounded in the atypical case of TimeZone. com. Journal of management, 27(3), 297-312.
Scott, J. (2011). Social network analysis: developments, advances, and prospects. Social network analysis and mining, 1(1), 21-26.
Shi, J., Wang, X., Peng, T. Q., & Chen, L. (2017). Understanding interactions in virtual HIV communities: a social network analysis approach. AIDS care, 29(2), 239-243.
Snijders, T. A. (2011). Statistical models for social networks. Annual Review of Sociology, 37, 131-153.
Snijders, T. A., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological methodology, 36(1), 99-153.
Sproull, L., & Faraj, S. (1997). Atheism, sex, and databases: The net as a social technology. Culture of the Internet, 16(3), 35-51.
Sproull, L., & Kiesler, S. (1991). Computers, networks and work. Scientific American, 265(3), 116-123.
Tang, M.C., Cheng, Y. J., & Chen, K. H. (2017). A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses. Scientometrics, 113(2), 985-1008.
Van Wijk, B. C., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PloS one, 5(10), e13701.
Venkatraman, N., & Lee, C. H. (2004). Preferential linkage and network evolution: A conceptual model and empirical test in the US video game sector. Academy of Management Journal, 47(6), 876-892.
Wang, P., Sharpe, K., Robins, G. L., & Pattison, P. E. (2009). Exponential random graph (p∗) models for affiliation networks. Social Networks, 31(1), 12-25.
Wang, R., Scown, P., Urquhart, C., & Hardman, J. (2014). Tapping the educational potential of Facebook: Guidelines for use in higher education. Education and Information Technologies, 19(1), 21-39.
Wasko, M. M., & Faraj, S. (2000). “It is what one does”: why people participate and help others in electronic communities of practice. The Journal of Strategic Information Systems, 9(2), 155-173.
Wasko, M. M., & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS quarterly, 29(1), 35-57.
Wasko, M. M., Teigland, R., & Faraj, S. (2009). The provision of online public goods: Examining social structure in an electronic network of practice. Decision Support Systems, 47(3), 254-265.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications . NY: Cambridge university press.
Wasserman, S., & Galaskiewicz, J. (Eds.). (1994). Advances in social network analysis: Research in the social and behavioral sciences . Thousand Oaks, CA: Sage.
Welbourne, J. L., Blanchard, A. L., & Wadsworth, M. B. (2013). Motivations in virtual health communities and their relationship to community, connectedness and stress. Computers in Human Behavior, 29(1), 129-139.
Wellman, B. (1996, April). For a social network analysis of computer networks: a sociological perspective on collaborative work and virtual community. In Proceedings of the 1996 ACM SIGCPR/SIGMIS conference on Computer personnel research (pp. 1-11). ACM.
Wu, J. B., Hom, P. W., Tetrick, L. E., Shore, L. M., Jia, L., Li, C., & Song, L. J. (2006). The norm of reciprocity: Scale development and validation in the Chinese context. Management and Organization Review, 2(3), 377-402.
Zhang, Y., Fang, Y., Wei, K. K., & Chen, H. (2010). Exploring the role of psychological safety in promoting the intention to continue sharing knowledge in virtual communities. International Journal of Information Management, 30(5), 425-436.
Zvilichovsky, D., Inbar, Y., & Barzilay, O. (2015). Playing both sides of the market: Success and reciprocity on crowdfunding platforms. Retrieved from SSRN: https://ssrn.com/abstract=2304101
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70152-
dc.description.abstract虛擬社群是當今人們獲取資訊的重要管道,過去文獻指出,不同性質的虛擬社群有其互動模式,並構成獨特的網絡結構,較不宜被均質地討論。虛擬社群被區分為「問答型」、「討論型」、「社會支持型」三種主要的性質,為驗證不同性質的虛擬社群確實展現特有的網絡樣態,本研究針對批踢踢實業坊中各自代表不同社群性質之「C++板」、「健身板」、「狗板」進行探討。
本研究採取不同於過去僅考量成員間單一互動關係的網絡建構方式,而將多元的互動關係完整地納入考量中,試圖建構出更貼近社群真實複雜互動情形的網絡。網絡建構方式的不同的確在一些網絡分析指標量測結果上呈現明顯的差異;此外,指標量測結果也指出不同性質的虛擬社群有著獨特的網絡特徵。因此,本研究進一步運用「指數隨機圖模型」 (Exponential Random Graph Models, ERGMs)觀察不同性質虛擬社群的網絡樣態,尤其關注於社會交換行為的活動,透過對網絡的微觀結構進行統計檢定,而後得知不同性質虛擬社群所擁有的網絡樣態特徵是具有統計意義的。
不同性質的社群因不同程度的討論門檻影響著使用者行為模式,進而形塑獨特的網絡樣態。研究結果顯示:(一)有別於過去文獻的研究結果,「問答型社群」網絡凝聚力事實上是最高的,與「小世界」網絡型態相似,社群中較容易觀察到「直接互惠」與「間接互惠」現象。此結果與本研究更精細的網絡建構方式息息相關;(二)「討論型社群」整體緊密而無明顯的分群情形,本研究提出「萍水相逢」網絡型態來描述之,社群中可能存在「間接互惠」與「擇優連結」的傾向;(三)「社會支持型社群」整體凝聚力雖最低,但其分群結果明顯,代表不同的小團體有其各自感興趣的話題,小團體內部的凝聚力高,但小團體之間仍有較「小世界」網絡型態更為密切的來往。網絡整體與「結構凝聚」網絡型態相似,容易觀察到「間接互惠」的現象,並可能存在「擇優連結」傾向。
zh_TW
dc.description.abstractVirtual communities have become an important venue for individuals to seek information and find social support. Previous studies indicate that different types of virtual communities have distinct interaction patterns among members, it is therefore inappropriate to treat all virtual communities as the same because of their unique network structures. Specifically, three types of virtual communities have been distinguished: “question and answer”, “discussion” and ” social support”. To examine whether different virtual communities do indeed have different network structure and topologies, three bulletin boards: ”C++”, “MuscleBeach” and “Dog”, were selected from PPT, the largest electronic bulletin board in Taiwan; each represents the aforementioned types of virtual communities.
A new approach to network construction that takes into account the full complexity of the interactive nature of the threaded dialogues within the bulletin boards was adopted. Significant differences were found between the proposed and the traditional network construction method on serveral social network measures. It was also found that the three virtual communities did demonstrate very different interaction patterns and network structure. Furthermore, motivated by social exchange theory, we further explore the network typologies in these virtual communities using Exponential Random Graph Models (ERGMs), which allows us to perform statistical test on the differences in interaction patterns.
The results show that: (1) Contrary to previous research result, the “question and answer community” demonstrates considerable network cohesivenss and resembles the “small world” typology, mainly due to the more elaborate network construction approach we propose. “Direct reciprocity” and “indirect reciprocity” in this type of community were shown to be statistically more prevalent. (2) The “discussion community” is cohesive and without clearly demarcated network boundaries, hence we propose “chance encounter” typology to portray this kind of community. “Indirect reciprocity” and “preferential attachment” were found to occur frequently in it. (3) The ”social support community” demonstrates very clear network clustering, though considerable denser intearctions were found than in the case of the small world structure. It demonstrates the “structurally cohesive” typology where “indirect reciprocity” and “preferential attachment” were more frequently found.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:46:23Z (GMT). No. of bitstreams: 1
ntu-107-R04126007-1.pdf: 12711947 bytes, checksum: 12b0ecc567c3c1bb546c881193c92bce (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目次 V
圖次 VI
表次 VII
第一章 緒論 1
第一節 問題陳述 1
第二節 研究目的與研究問題 5
第三節 名詞解釋 6
第二章 文獻回顧 7
第一節 虛擬社群 7
第二節 虛擬社群中的社會交換 13
第三節 社會網絡分析 22
第三章 研究設計與實施 32
第一節 研究對象與資料蒐集 32
第二節 研究工具 39
第三節 研究流程 41
第四節 資料分析 42
第四章 研究結果 55
第一節 長時間尺度之看板資料 55
第二節 看板資料統計 58
第三節 社會網絡分析指標與網絡型態 69
第四節 指數隨機圖模型分析 80
第五節 綜合討論 113
第五章 結論與建議 121
第一節 結論 121
第二節 研究限制與研究建議 123
參考文獻 127
附錄 136
dc.language.isozh-TW
dc.subject指數隨機圖模型zh_TW
dc.subject社會交換zh_TW
dc.subject虛擬社群zh_TW
dc.subject社會網絡分析zh_TW
dc.subjectSocial Network Analysis (SNA)en
dc.subjectVirtual Communityen
dc.subjectExponential Random Graph Models (ERGMs)en
dc.subjectSocial Exchangeen
dc.title運用指數隨機圖模型探討不同性質虛擬社群之社會交換網絡:以批踢踢實業坊為例zh_TW
dc.titleComparing Social Network Exchange Patterns in Different Types of Virtual Communities : An Exponential Random Graph Models (ERGMs) Approachen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee溫在弘,林頌堅
dc.subject.keyword虛擬社群,社會網絡分析,指數隨機圖模型,社會交換,zh_TW
dc.subject.keywordVirtual Community,Social Network Analysis (SNA),Exponential Random Graph Models (ERGMs),Social Exchange,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201800067
dc.rights.note有償授權
dc.date.accepted2018-01-30
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
12.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved