請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70121完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱致遠 | |
| dc.contributor.author | Hsin-Hui Shih | en |
| dc.contributor.author | 施欣慧 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:44:38Z | - |
| dc.date.available | 2028-01-29 | |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-01 | |
| dc.identifier.citation | [1] An, K., & Lo, H. (2014). Service Reliability-Based Transit Network Design with Stochastic Demand. Transportation Research Record: Journal of the Transportation Research Board, (2467), 101-109.
[2] An, K., & Lo, H. K. (2016). Two-phase stochastic program for transit network design under demand uncertainty. Transportation Research Part B: Methodological, 84, 157-181. [3] Baaj, M. H., & Mahmassani, H. S. (1991). An AI‐based approach for transit route system planning and design. Journal of advanced transportation, 25(2), 187-209. [4] Balinski, M. L., & Quandt, R. E. (1964). On an integer program for a delivery problem. Operations Research, 12(2), 300-304. [5] Chu, J. C. (2017). Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network design and timetabling. [6] Cordeau, J. F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3), 573-586. [7] Cordeau, J. F., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6), 579-594. [8] Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem. European Journal of Operational Research, 175(3), 1605-1615. [9] Daganzo, C. F. (1978). An approximate analytic model of many-to-many demand responsive transportation systems. Transportation Research, 12(5), 325-333. [10] Gendreau, M., & Potvin, J. Y. (1998). Dynamic vehicle routing and dispatching. Fleet management and logistics (pp. 115-126). Springer US. [11] Guihaire, V., & Hao, J. K. (2008). Transit network design and scheduling: A global review. Transportation Research Part A: Policy and Practice, 42(10), 1251-1273. [12] Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I. E., ... & Wassick, J. (2014). Scope for industrial applications of production scheduling models and solution methods. Computers & Chemical Engineering, 62, 161-193. [13] Jaw, J. J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. (1986). A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research Part B: Methodological, 20(3), 243-257. [14] Lee, C.W. (2016). An Optimization Framework for Transit Network Design and Scheduling (Master's thesis). National Taiwan University [15] Madsen, O. B., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for a dial-a-ride problem with time windows, multiple capacities, and multiple objectives. Annals of operations Research, 60(1), 193-208. [16] Pattnaik, S. B., Mohan, S., & Tom, V. M. (1998). Urban bus transit route network design using genetic algorithm. Journal of transportation engineering, 124(4), 368-375. [17] Till, J., Sand, G., Urselmann, M., & Engell, S. (2007). A hybrid evolutionary algorithm for solving two-stage stochastic integer programs in chemical batch scheduling. Computers & Chemical Engineering, 31(5), 630-647. [18] Tom, V. M., & Mohan, S. (2003). Transit route network design using frequency coded genetic algorithm. Journal of transportation engineering, 129(2), 186-195. [19] Tometzki, T., & Engell, S. (2009). Hybrid evolutionary optimization of two-stage stochastic integer programming problems: An empirical investigation. Evolutionary computation, 17(4), 511-526. [20] Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications. Society for Industrial and Applied Mathematics. [21] Ropke, S., Cordeau, J.-F., & Laporte, G. (2007). Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks, 49, 258–272. [22] Zhou, Z., Zhang, J., Liu, P., Li, Z., Georgiadis, M. C., & Pistikopoulos, E. N. (2013). A two-stage stochastic programming model for the optimal design of distributed energy systems. Applied Energy, 103, 135-144. [23] 蘇昭銘, 王張煒, & 何文基. (2015). 中小型鄉鎮接駁公車之路線設計方法. 運輸計劃季刊, 44(4), 313-332. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70121 | - |
| dc.description.abstract | 由於偏遠地區之運輸需求在空間上及時間上較為分散,使用單一運具無法有效服務當地之起訖點需求,因此,本研究結合公車路線及撥召服務,設計整合之規劃模式,以滿足偏遠地區隨機旅次需求。公車為一固定路線、班次之服務,撥召服務較為彈性能依旅客需求改變路徑,採公車結合撥召服務的彈性運輸服務模式,將能提高偏遠地區交通運輸效能。本研究提出整合兩階段之隨機規劃數學模式,第一階段之主線公車路線及時刻表問題以集合分割(Set-partitioning)問題建模,第二階段之撥召服務則是以時窗限制下收送貨之配送路線問題(Pick-up and Delivery Problem with Time Window)描述之。為提昇求解效率,本研究採用兩種演算法,分別應用在兩階段,第一階段以鄰域搜尋法求解主線公車路線及時刻表之集合分割問題,之後以貪婪演算法及2-opt改進法發展混合啟發式演算法以求解撥召服務營運方式。最後,以兩案例比較測試結合公車及撥召服務與否對公共運輸服務之影響,結果顯示,有結合撥召服務的整體規劃能在各種情境下服務近乎全部之需求,未結合撥召服務之規劃,雖能產生一條服務較多旅客之公車路線,剩下之需求即使再提供撥召服務也無法滿足,兩案例證明針對偏遠地區之運輸規劃,若以公車結合撥召服務,能提高運輸效能,且能最小化未能被服務之旅次需求數,本研究最後調整撥召服務之參數進行敏感度分析,並驗證求解過程之正確性,以供未來偏遠地區路網規劃及結合運具之依據。 | zh_TW |
| dc.description.abstract | This study integrates bus and dial-a-ride (DAR) services to address stochastic demands in the remote areas. Fixed services, such as buses, provide high capacity, but the route and schedule are fixed. Flexible services, such as dial-a-ride, is door-to-door and the route and schedule vary with the demands but have lower capacity. The integration of fixed and flexible services, which are bus and dial-a-ride, enhances the transportation efficiency and decreases the waste of resources. A 2-stage stochastic mathematical model is formulated. Initially, a fixed bus line with schedule is constructed in the first stage as a set-partitioning problem. A DAR problem is designed in the second stage as a pick-up and delivery vehicle routing problem with time window (PDVRPTW). A hybrid algorithm is developed to solve the stochastic programming problem. A route-enumeration tree search algorithm that is based on the neighborhood search is developed to solve the first stage problem (a fixed bus line). For each solution of the first stage problem, a hybrid heuristic algorithm including greedy algorithm and 2-opt improvement is proposed to solve the second stage problem (DAR problem). An illustrative example and a real case in Hengshan Township are presented to validate the proposed methodology. It is shown that the integration of bus and DAR can effectively prevent the isolation of demands. Solving the problem with DAR service could generate integrated services of bus and DAR that serves the majority of the demands under each scenario. By contrast, without considering DAR, the demands that are not served by buses are very difficult to serve by DAR. The sensitivity analysis for DAR parameters is also conducted, including the capacity of vehicles, maximum driving distance, and the number of vehicles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:44:38Z (GMT). No. of bitstreams: 1 ntu-107-R04521501-1.pdf: 4949333 bytes, checksum: c4ef383fb1d134d69d639edc9c2241e4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 ii
ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 1.3 Contribution Summary 2 1.4 Thesis Organization 3 Chapter 2 Literature Review 4 2.1 Transit Network Design Problem 4 2.1.1 Generate a Set of Feasible Bus Routes 4 2.1.2 Set-partitioning Formulation 5 2.2 Dial-a-Ride Service 5 2.2.1 Mixed-Integer Problem 5 2.2.2 Heuristics 6 2.3 Integrated Problem 8 2.4 Stochastic Programming (SP) 9 Chapter 3 Methodology 11 3.1 Problem Statement 11 3.2 Fixed Bus Line 13 3.2.1 Enumeration Tree of Bus Routes (Illustrative example) 14 3.2.2 Enumeration Tree of Bus Routes (Mandl’s network) 15 3.3 Dial-a-ride 17 3.4 Stochastic Mixed-Integer Problem Model 17 3.4.1 Sets, Parameters, and Variables 17 3.4.2 Objective Function 19 3.4.3 Stage 1: Fixed Bus Line Constraints 20 3.4.4 Stage 2: Dial-a-Ride Constraints 21 Chapter 4 Solution approach 24 4.1 Stage 1: Tree Search for Fixed Bus Line 26 4.2 Stage 2: DARP (Dial-a-Ride Problem) Heuristic 30 Chapter 5 Case study 34 5.1 Characteristic of Hengshan Township 34 5.2 Determine the number of scenarios 37 5.3 Comprehensive analysis 37 5.3.1 Case I: 8 demands in a 14-station network 37 5.3.2 Case II: 100 demands in a 14-station network 44 5.3.3 Sensitivity Analysis 51 Chapter 6 Conclusions and Future Research 57 6.1 Conclusion 57 6.2 Future Work 59 REFERENCE 60 APPENDIX 63 | |
| dc.language.iso | en | |
| dc.subject | 集合分割 | zh_TW |
| dc.subject | 鄰域搜尋法 | zh_TW |
| dc.subject | 整合規劃 | zh_TW |
| dc.subject | 撥召服務 | zh_TW |
| dc.subject | 大眾運輸 | zh_TW |
| dc.subject | 隨機規劃 | zh_TW |
| dc.subject | public transit | en |
| dc.subject | neighborhood search | en |
| dc.subject | local search | en |
| dc.subject | set-partitioning | en |
| dc.subject | integration | en |
| dc.subject | dial-a-ride | en |
| dc.subject | stochastic | en |
| dc.title | 考量隨機需求下公車路線與撥召服務之整合規劃 | zh_TW |
| dc.title | A Stochastic Programming Model for Integration of
Bus Route Design and Dial-a-ride Scheduling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊穎,許聿廷 | |
| dc.subject.keyword | 隨機規劃,大眾運輸,撥召服務,整合規劃,集合分割,鄰域搜尋法, | zh_TW |
| dc.subject.keyword | stochastic,public transit,dial-a-ride,integration,set-partitioning,local search,neighborhood search, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201800075 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
