Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70111Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 溫政彥(Cheng-Yen Wen) | |
| dc.contributor.author | Yu-Ting Hong | en |
| dc.contributor.author | 洪郁婷 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:44:05Z | - |
| dc.date.available | 2018-02-23 | |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-02 | |
| dc.identifier.citation | 1. S. Thiberge et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions, P. Natl. Acad. Sci. USA. 101, 3346-3351 (2004).
2. H.G. Liao, and H.M. Zheng, Liquid cell transmission electron microscopy, Annu. Rev. Phys. Chem. 67, 719-747 (2016). 3. E.A. Ring, and N. de Jonge, Microfluidic system for transmission electron microscopy, Microsc. Microanal. 16, 622-629 (2010). 4. J.M. Yuk et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science 336, 61-64 (2012). 5. X.Y. Yu, B.W. Liu, and L. Yang, Imaging liquids using microfluidic cells, Microfluid. Nanofluid. 15, 725-744 (2013). 6. N. de Jonge et al., Electron microscopy of whole cells in liquid with nanometer resolution, P. Natl. Acad. Sci. USA. 106, 2159-2164 (2009). 7. K.L. Liu et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions, Lab Chip 8, 1915-1921 (2008). 8. L. Yang et al., Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques, J. Vac. Sci. Technol. A 29, 061101(2011). 9. Q. Chen et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy, Nano Lett. 13, 4556-4561 (2013). 10. J.C. Zhang et al., Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells, Adv. Mater. 29, (2017). 11. W.N. Yang et al., Dynamic imaging of Au-nanoparticles via scanning electron microscopy in a graphene wet cell, Nanotechnology 26, 315703 (2015). 12. V.P. Adiga et al., Liquid flow cells having graphene on nitride for microscopy, US Patent (2016). 13. C. JF et al., An all-in-one nanoreactor for high-resolution microscopy on nanomaterials at high pressures, 2011 IEEE 24th International Conference, Cancun, Mexico, (2011). 14. X. Lu et al., Tailoring graphite with the goal of achieving single sheets, Nanotechnology 10, 269-272 (1999). 15. K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306, 666-669 (2004). 16. X. Liang et al., Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites, Nano Lett. 9, 467-472 (2008). 17. W. Gao et al., New insights into the structure and reduction of graphite oxide, Nat. Chem. 1, 403-408 (2009). 18. D. Li et al., Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3, 101-105 (2008). 19. H.J. Shin et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19, 1987-1992 (2009). 20. H.C. Schniepp et al., Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B 110, 8535-8539 (2006). 21. M.J. McAllister et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19, 4396-4404 (2007). 22. S. Stankovich et al., Graphene-based composite materials, Nature 442, 282-286 (2006). 23. W.S. Hummers Jr and R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80, 1339 (1958). 24. C. Berger et al., Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191-1196 (2006). 25. W.A. De Heer et al., Epitaxial graphene, Solid State Commun. 143, 92-100 (2007). 26. S. Zhou et al., Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater. 6, 770-775 (2007). 27. J. Hass, W. De Heer, and E. Conrad, The growth and morphology of epitaxial multilayer graphene, J. Phys. Condens. Matter 20, 323202 (2008). 28. M. Sprinkle et al., Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5, 727-731 (2010). 29. S. Saadi et al., On the role of metal step-edges in graphene growth, J. Phys. Chem. C 114, 11221-11227 (2010). 30. C. Mattevi, H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem. 21, 3324-3334 (2011). 31. Q. Yu et al., Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett. 93, 113103 (2008). 32. L. Baraton et al., On the mechanisms of precipitation of graphene on nickel thin films, Europhys. Lett. 96, 46003 (2011). 33. Y. Zhang et al., Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition, J. Phys. Chem. Lett. 1, 3101-3107 (2010). 34. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324, 1312-1314 (2009). 35. X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett. 9, 4268-4272 (2009). 36. H. Mehdipour, and K. Ostrikov, Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure, Acs Nano 6, 10276-10286 (2012). 37. X. Liu et al., Segregation growth of graphene on Cu-Ni alloy for precise layer control, J. Phys. Chem. C 115, 11976-11982 (2011). 38. Y. Ogawa et al., Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films, J. Phys. Chem. Lett. 3, 219-226 (2011). 39. L. Gao, J.R. Guest, and N.P. Guisinger, Epitaxial graphene on Cu(111), Nano Lett. 10, 3512-3516 (2010). 40. J. Cho et al., Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing, Acs Nano 5, 3607-3613 (2011). 41. H.I. Rasool et al., Continuity of graphene on polycrystalline copper, Nano Lett. 11, 251-256 (2010). 42. H.I. Rasool et al., Atomic-scale characterization of graphene grown on copper (100) single crystals, J. Am. Chem. Soc. 133, 12536-12543 (2011). 43. A.T. Murdock et al., Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene, Acs Nano 7, 1351-1359 (2013). 44. A. Reina et al., Transferring and identification of single- and few-layer graphene on arbitrary substrates, J. Phys. Chem. C 112, 17741-17744 (2008). 45. X. Li et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett. 9, 4359-4363 (2009). 46. X. Liang et al., Toward clean and crackless transfer of graphene, Acs Nano 5, 9144-9153 (2011). 47. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5, 574-578 (2010). 48. J. Kang et al., Efficient transfer of large-area graphene films onto rigid substrates by hot pressing, Acs Nano 6, 5360-5365 (2012). 49. L. Gao et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun. 3, 699 (2012). 50. D.Y. Wang et al., Clean-lifting transfer of large-area residual-free graphene films, Adv. Mater. 25, 4521-4526 (2013). 51. A. Ismach et al., Direct chemical vapor deposition of graphene on dielectric surfaces, Nano Lett. 10, 1542-1548 (2010). 52. C.Y. Su et al., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano Lett. 11, 3612-3616 (2011). 53. Z.W. Peng et al., Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel, Acs Nano 5, 8241-8247 (2011). 54. J. Kwak et al., Near room-temperature synthesis of transfer-free graphene films, Nat. Commun. 3, 645 (2012). 55. P.Y. Teng et al., Remote catalyzation for direct formation of graphene layers on oxides, Nano Lett. 12, 1379-1384 (2012). 56. H. Kim et al., Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate, Acs Nano 7, 6575-6582 (2013). 57. M. Kosaka et al., Direct synthesis of few- and multi-layer graphene films on dielectric substrates by 'etching-precipitation' method, Carbon 82, 254-263 (2015). 58. Y. Wang et al., Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells, Adv. Mater. 23, 1514-1518 (2011). 59. B. Tang, H. Guoxin, and H. Gao, Raman spectroscopic characterization of graphene, Appl. Spectrosc. Rev. 45, 369-407 (2010). 60. Z. Ni et al., Raman spectroscopy and imaging of graphene, Nano Res. 1, 273-291 (2008). 61. K. Murakami, T. Kadowaki, and J. Fujita, Damage and strain in single-layer graphene induced by very-low-energy electron-beam irradiation, Appl. Phys. Lett. 102, 043111 (2013). 62. J.C. Meyer et al., Accurate measurement of electron beam induced displacement cross sections for single-layer graphene, Phys. Rev. Lett. 108, 196102 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70111 | - |
| dc.description.abstract | 液體槽(Liquid cell)的發展使臨場觀察流體或其內部物質的技術到達了一個新的里程碑,無論是在生物領域得以觀察細胞於水溶液中的真實樣貌,或是在材料科學領域觀察金屬奈米粒子於溶液中的成長與融合。而石墨烯液胞(Graphene liquid cell)利用石墨烯的高強度、高電子穿透率、高化學穩定性且為人類已知最薄的二維材料等特質,將其應用於密封液體供電子顯微鏡觀察之用途,此發明在以電子顯微鏡觀察液體內物質的解析度方面再度向前推進了一步。然而以上兩種觀察液體內物質的方法各有其優缺,如液體槽因為使用氮化矽薄膜為視窗,故無法達到同石墨烯液胞一般優良的解析度,而石墨烯液胞則是在樣品準備上較為繁複,並且因為製備方法上的限制,犧牲了許多液體槽可以整合的功能性包括液體流動、施加電壓或是加熱等等。
本研究嘗試結合兩者的優點,製作石墨烯視窗液體槽微晶片(Graphene liquid cell microchip),保持液體槽的晶片設計形式,並將電子可穿透視窗由氮化矽改為石墨烯薄膜,在改善解析度的同時,保留與各種功能整合的可能性。實驗的製程步驟依序為晶圓分割與清洗、視窗及支撐薄膜的尺寸定義、矽基板的化學蝕刻以及化學氣相沉積法成長石墨烯與其逐層堆疊之轉印。石墨烯視窗液體槽微晶片製備完成後,我們使用掃描式電子顯微鏡、穿透式電子顯微鏡及拉曼光譜儀檢查視窗的覆蓋率與石墨烯薄膜的品質,並設計微晶片適用之載台於真空腔體內測試其密封可靠性,最後於電子顯微鏡中觀察噴灑於表面後烤乾之金奈米粒子以及懸浮於溶液中之金奈米粒子,以測試其可行性,並與常見的氮化矽視窗薄膜加以比較。 | zh_TW |
| dc.description.abstract | The development of liquid cells has marked a milestone of in-situ observation. It is a very useful tool in many research fields, such as observing cells in aqueous solution in the field of biology, and watching the growth and coalescence behavior of nanoparticles in materials science. Recently, the invention of graphene liquid cell provides a better resolution for observing liquid samples in an electron microscope. The outstanding physical properties of graphene, including its high strength, high electron transparency, high chemical stability, and the thickness of one atomic layer, are utilized as the membrane material in the liquid cells. On the other hand, the process to use silicon nitride as the window membrane on liquid cell microchips is already mature. Besides, other functions, e.g. liquid flow, electrical biasing, or heating, can be integrated. However, the thickness of the silicon nitride membrane lowers the image resolution. In this research, we aim to make a graphene liquid cell microchip, which exhibits the merits of liquid cell microchips and the graphene liquid cell.
We replace the silicon nitride window membrane with a multilayer graphene film in order to obtain better image resolution, and, meanwhile, the possibility of integrating multiple functions on silicon-based microchip is preserved. The first step in the fabrication process of graphene liquid cell microchip is wafer dicing and cleaning. The second step is to produce the holey pattern of the silicon nitride supporting window membrane by means of photolithography and reactive ion etching of the standard semiconductor processes. Than silicon substrate underneath the silicon nitride membrane is removed by anisotropic etching using potassium hydroxide solution. Finally, CVD graphene sheets are transferred onto the microchip layer by layer to make a multilayer graphene film as the membrane on the microchip. Scanning electron microscope, transmission electron microscope and Raman spectrometer are used to examine the coverage and quality of graphene on the holey supporting window. A holder is designed for the graphene liquid cell microchip for testing the leakage in vacuum and the observations of dispersed gold nanoparticles in aqueous solution in a scanning electron microscope. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:44:05Z (GMT). No. of bitstreams: 1 ntu-107-R04527075-1.pdf: 8577451 bytes, checksum: 4abc5fd215f729dd8ed38543c9aa685c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書#
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 概述與動機 1 Chapter 2 Liquid Cell的基本介紹 3 2.1 Si-based Flow Cell之設計型態與製程 4 2.2 Graphene Liquid Cell之結構與製備方法 10 2.3 Graphene Liquid Cell與Si-based Flow Cell之比較 15 Chapter 3 石墨烯的製備方法 16 3.1 機械剝離法 16 3.2 化學溶液法 18 3.3 磊晶成長法 19 3.4 化學氣相沉積法 21 3.4.1 基板效應與成長機制 21 3.4.2 石墨烯轉印 30 3.4.3 於絕緣基板直接成長石墨烯 34 Chapter 4 實驗步驟與研究方法 38 4.1 實驗步驟 38 4.1.1 基板選擇與前處理 38 4.1.2 以微影製程及反應離子蝕刻定義圓形視窗陣列與矩形支撐薄膜 39 4.1.3 氫氧化鉀溶液蝕刻矽基板製備氮化矽支撐薄膜 41 4.1.4 石墨烯成長與多層石墨烯薄膜轉印至視窗 43 4.2 薄膜分析與鑑定 45 4.2.1 光學顯微鏡 45 4.2.2 拉曼光譜儀 46 4.2.3 掃描式電子顯微鏡 47 4.2.4 穿透式電子顯微鏡 48 Chapter 5 結果與討論 49 5.1 PMMA移除方法之比較 49 5.2 石墨烯層數與覆蓋率之關係 51 5.3 石墨烯視窗之電子穿透程度 53 5.4 石墨烯視窗液體槽微晶片之真空洩漏測試 56 5.5 以掃描式電子顯微鏡觀察懸浮於水中之金奈米粒子 57 Chapter 6 結論與未來展望 58 REFERENCE 59 Appendix A 電子束對石墨烯造成的破壞 62 Appendix B 以化學氣相沉積法於絕緣基板直接成長石墨烯 65 B.1 以鎳催化成長 65 B.2 以銅催化成長 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 液體槽 | zh_TW |
| dc.subject | 電子顯微鏡 | zh_TW |
| dc.subject | 液體觀察 | zh_TW |
| dc.subject | 製程設計 | zh_TW |
| dc.subject | electron microscopy | en |
| dc.subject | liquid cell | en |
| dc.subject | observation of liquid phase | en |
| dc.subject | microfabrication process | en |
| dc.subject | graphene | en |
| dc.title | 用於觀察流體內物質之電子顯微鏡石墨烯視窗的製作 | zh_TW |
| dc.title | Making Graphene Membranes in Electron Microscopy Liquid Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李紹先(Shao-Sian Li),王迪彥(Di-Yan Wang) | |
| dc.subject.keyword | 石墨烯,液體槽,電子顯微鏡,液體觀察,製程設計, | zh_TW |
| dc.subject.keyword | graphene,liquid cell,electron microscopy,observation of liquid phase,microfabrication process, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201800293 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 8.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
