Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃正雅(Cheng-Ya Huang)
dc.contributor.authorChen-Hsing Sheuen
dc.contributor.author許晨星zh_TW
dc.date.accessioned2021-06-17T03:43:45Z-
dc.date.available2023-08-01
dc.date.copyright2020-09-01
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol Dis. 2015;82:226-234.
2. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson's disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis. 2012;2012:918719.
3. Giladi N, McMahon D, Przedborski S, et al. Motor blocks in Parkinson's disease. Neurology. 1992;42(2):333-339.
4. Gray P, Hildebrand K. Fall risk factors in Parkinson's disease. J Neurosci Nurs. 2000;32(4):222-228.
5. Nutt JG, Bloem BR, Giladi N, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10(8):734-744.
6. Lamberti P, Armenise S, Castaldo V, et al. Freezing gait in Parkinson's disease. Eur Neurol. 1997;38(4):297-301.
7. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci. 1997;52(4):M232-M240.
8. Bloem BR, Valkenburg VV, Slabbekoorn M, Willemsen MD. The Multiple Tasks Test: development and normal strategies. Gait Posture. 2001;14(3):191-202.
9. Peterson DS, Fling BW, Mancini M, Cohen RG, Nutt JG, Horak FB. Dual-task interference and brain structural connectivity in people with Parkinson's disease who freeze. J Neurol Neurosurg Psychiatry. 2015;86(7):786-792.
10. Tard C, Delval A, Duhamel A, Moreau C, Devos D, Dujardin K. Specific Attentional Disorders and Freezing of Gait in Parkinson's Disease. J Parkinsons Dis. 2015;5(2):379-387.
11. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR. Freezing of gait: a practical approach to management. Lancet Neurol. 2015;14(7):768-778.
12. Plotnik M, Hausdorff JM. The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson's disease. Mov Disord. 2008;23 Suppl 2: S444-50.
13. Jacobs JV, Nutt JG, Carlson-Kuhta P, Stephens M, Horak FB. Knee trembling during freezing of gait represents multiple anticipatory postural adjustments. Exp Neurol. 2009;215(2):334-341.
14. Cohen RG, Nutt JG, Horak FB. Errors in postural preparation lead to increased choice reaction times for step initiation in older adults. J Gerontol A Biol Sci Med Sci. 2011;66(6):705-713.
15. Vandenbossche J, Deroost N, Soetens E, et al. Freezing of gait in Parkinson's disease: disturbances in automaticity and control. Front Hum Neurosci. 2013;6:356.
16. Owen AM. Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist. 2004;10(6):525-537.
17. Giladi N. Gait disturbances in advanced stages of Parkinson's disease. Adv Neurol. 2001;86:273-278.
18. O'Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther. 2002;82(9):888-897.
19. Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson's disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res. 2007;177(3):336-346.
20. Plotnik M, Dagan Y, Gurevich T, Giladi N, Hausdorff JM. Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson's disease suffering from motor response fluctuations. Exp Brain Res. 2011;208(2):169-179.
21. Lord S, Baker K, Nieuwboer A, Burn D, Rochester L. Gait variability in Parkinson's disease: an indicator of non-dopaminergic contributors to gait dysfunction?. J Neurol. 2011;258(4):566-572.
22. Rochester L, Galna B, Lord S, Burn D. The nature of dual-task interference during gait in incident Parkinson's disease. Neuroscience. 2014;265:83-94.
23. Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci. 2010;11(11):760-772.
24. Vandenbossche J, Deroost N, Soetens E, et al. Conflict and freezing of gait in Parkinson's disease: support for a response control deficit. Neuroscience. 2012;206:144-154.
25. Vandenbossche J, Deroost N, Soetens E, et al. Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil Neural Repair. 2011;25(8):765-773.
26. Spildooren J, Vercruysse S, Desloovere K, Vandenberghe W, Kerckhofs E, Nieuwboer A. Freezing of gait in Parkinson's disease: the impact of dual-tasking and turning. Mov Disord. 2010;25(15):2563-2570.
27. Vervoort G, Heremans E, Bengevoord A, et al. Dual-task-related neural connectivity changes in patients with Parkinson' disease. Neuroscience. 2016;317:36-46.
28. de Souza Fortaleza AC, Mancini M, Carlson-Kuhta P, et al. Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait. Gait Posture. 2017;56:76-81.
29. Shine JM, Matar E, Ward PB, et al. Differential neural activation patterns in patients with Parkinson's disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One. 2013;8(1):e52602.
30. Almeida QJ, Frank JS, Roy EA, Patla AE, Jog MS. Dopaminergic modulation of timing control and variability in the gait of Parkinson's disease. Mov Disord. 2007;22(12):1735-1742.
31. Rochester L, Baker K, Nieuwboer A, Burn D. Targeting dopa-sensitive and dopa-resistant gait dysfunction in Parkinson's disease: selective responses to internal and external cues. Mov Disord. 2011;26(3):430-435.
32. Heremans E, Nieuwboer A, Spildooren J, et al. Cognitive aspects of freezing of gait in Parkinson's disease: a challenge for rehabilitation. J Neural Transm (Vienna). 2013;120(4):543-557.
33. Nieuwboer A, Kwakkel G, Rochester L, et al. Cueing training in the home improves gait-related mobility in Parkinson's disease: the RESCUE trial. J Neurol Neurosurg Psychiatry. 2007;78(2):134-140.
34. Allen NE, Canning CG, Sherrington C, et al. The effects of an exercise program on fall risk factors in people with Parkinson's disease: a randomized controlled trial. Mov Disord. 2010;25(9):1217-1225.
35. Latt MD, Lord SR, Morris JG, Fung VS. Clinical and physiological assessments for elucidating falls risk in Parkinson's disease. Mov Disord. 2009;24(9):1280-1289.
36. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871-884.
37. Brichetto G, Pelosin E, Marchese R, Abbruzzese G. Evaluation of physical therapy in parkinsonian patients with freezing of gait: a pilot study. Clin Rehabil. 2006;20(1):31-35.
38. Morris M, Iansek R, Smithson F, Huxham F. Postural instability in Parkinson's disease: a comparison with and without a concurrent task. Gait Posture. 2000;12(3):205-216.
39. Brauer SG, Morris ME. Can people with Parkinson's disease improve dual tasking when walking?. Gait Posture. 2010;31(2):229-233.
40. Conradsson D, Löfgren N, Nero H, et al. The Effects of Highly Challenging Balance Training in Elderly With Parkinson's Disease: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2015;29(9):827-836.
41. Geroin C, Nonnekes J, de Vries NM, et al. Does dual-task training improve spatiotemporal gait parameters in Parkinson's disease? Parkinsonism Relat Disord. 2018;55:86-91.
42. Yang YR, Cheng SJ, Lee YJ, Liu YC, Wang RY. Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson's disease: A randomized controlled pilot study. PLoS One. 2019;14(6):e0218180.
43. Wulf G, Su J. An external focus of attention enhances golf shot accuracy in beginners and experts. Res Q Exerc Sport. 2007;78(4):384-389.
44. Chiviacowsky S, Wulf G, Wally R. An external focus of attention enhances balance learning in older adults. Gait Posture. 2010;32(4):572-575.
45. Kal E, van den Brink H, Houdijk H, et al. How physical therapists instruct patients with stroke: an observational study on attentional focus during gait rehabilitation after stroke. Disabil Rehabil. 2018;40(10):1154-1165.
46. Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):1143-1154.
47. Jazaeri SZ, Azad A, Mehdizadeh H, et al. The effects of anxiety and external attentional focus on postural control in patients with Parkinson's disease. PLoS One. 2018;13(2):e0192168.
48. Beck EN, Intzandt BN, Almeida QJ. Can Dual Task Walking Improve in Parkinson's Disease After External Focus of Attention Exercise? A Single Blind Randomized Controlled Trial. Neurorehabil Neural Repair. 2018;32(1):18-33.
49. Sage MD, Almeida QJ. Symptom and gait changes after sensory attention focused exercise vs aerobic training in Parkinson's disease. Mov Disord. 2009;24(8):1132-1138.
50. Landers MR, Hatlevig RM, Davis AD, Richards AR, Rosenlof LE. Does attentional focus during balance training in people with Parkinson's disease affect outcome? A randomised controlled clinical trial. Clin Rehabil. 2016;30(1):53-63.
51. Ginis P, Pirani R, Basaia S, et al. Focusing on heel strike improves toe clearance in people with Parkinson's disease: an observational pilot study. Physiotherapy. 2017;103(4):485-490.
52. Mak TCT, Young WR, Chan DCL, Wong TWL. Gait Stability in Older Adults During Level-Ground Walking: The Attentional Focus Approach. J Gerontol B Psychol Sci Soc Sci. 2020;75(2):274-281.
53. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding?. Eur J Neurosci. 2005;22(5):1248-1256.
54. Hoskovcová M, Dušek P, Sieger T, et al. Predicting Falls in Parkinson Disease: What Is the Value of Instrumented Testing in OFF Medication State? PLoS One. 2015;10(10):e0139849.
55. Landers M, Wulf G, Wallmann H, Guadagnoli M. An external focus of attention attenuates balance impairment in patients with Parkinson's disease who have a fall history. Physiotherapy. 2005;91(3):152-158.
56. Laessoe U, Hoeck HC, Simonsen O, Voigt M. Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum Mov Sci. 2008;27(3):496-512.
57. Sehm B, Taubert M, Conde V, et al. Structural brain plasticity in Parkinson's disease induced by balance training. Neurobiol Aging. 2014;35(1):232-239.
58. Maidan I, Nieuwhof F, Bernad-Elazari H, et al. Evidence for Differential Effects of 2 Forms of Exercise on Prefrontal Plasticity During Walking in Parkinson's Disease. Neurorehabil Neural Repair. 2018;32(3):200-208.
59. Pizzamiglio S, Naeem U, Abdalla H, Turner DL. Neural Correlates of Single- and Dual-Task Walking in the Real World. Front Hum Neurosci. 2017;11:460.
60. Guitart-Masip M, Barnes GR, Horner A, Bauer M, Dolan RJ, Duzel E. Synchronization of medial temporal lobe and prefrontal rhythms in human decision making. J Neurosci. 2013;33(2):442-451.
61. Meyer L, Grigutsch M, Schmuck N, Gaston P, Friederici AD. Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension. Cortex. 2015;71:205-218.
62. Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia. 2006;44(13):2594-2606.
63. Engel AK, Fries P. Beta-band oscillations--signalling the status quo?. Curr Opin Neurobiol. 2010;20(2):156-165.
64. Maidan I, Fahoum F, Shustak S, et al. Changes in event-related potentials during dual task walking in aging and Parkinson's disease. Clin Neurophysiol. 2019;130(2):224-230.
65. Huang WJ, Chen WW, Zhang X. The neurophysiology of P 300--an integrated review. Eur Rev Med Pharmacol Sci. 2015;19(8):1480-1488.
66. Chen YA. Effects of Attentional Focus on Dual-task Walking in Parkinson’s Disease with Freezer and Non-freezer. Master's thesis, National Taiwan Universtiy; 2018.
67. Strouwen C, Molenaar EA, Keus SH, et al. Protocol for a randomized comparison of integrated versus consecutive dual task practice in Parkinson's disease: the DUALITY trial. BMC Neurol. 2014;14:61.
68. Yu RL, Tan CH, Lu YC, Wu RM. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson's disease. Sci Rep. 2016;6:30424.
69. Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Fieuws S, Broens-Kaucsik E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease. Mov Disord. 2001;16(6):1066-1075.
70. Moreau C, Defebvre L, Bleuse S, et al. Externally provoked freezing of gait in open runways in advanced Parkinson's disease results from motor and mental collapse. J Neural Transm (Vienna). 2008;115(10):1431-1436.
71. Dubost V, Kressig RW, Gonthier R, et al. Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults. Hum Mov Sci. 2006;25(3):372-382.
72. Maki BE. Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc. 1997;45(3):313-320.
73. Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci. 2007;26(4):555-589.
74. Lo OY, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait Speed and Gait Variability Are Associated with Different Functional Brain Networks. Front Aging Neurosci. 2017;9:390.
75. Okuma Y, Silva de Lima AL, Fukae J, Bloem BR, Snijders AH. A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson's disease. Parkinsonism Relat Disord. 2018;46:30-35.
76. Tsang PS. Ageing and attentional control. Q J Exp Psychol (Hove). 2013;66(8):1517-1547.
77. Wulf, G. Attentional focus and motor learning: A review of 15 years. International Review of Sport and Exercise Psychology, 2013; 6(1),77–104.
78. Liao X, Yao D, Wu D, Li C. Combining spatial filters for the classification of single-trial EEG in a finger movement task. IEEE Trans Biomed Eng. 2007;54(5):821-831.
79. Vuckovic A, Sepulveda F. Delta band contribution in cue based single trial classification of real and imaginary wrist movements. Med Biol Eng Comput. 2008;46(6):529-539.
80. Robinson N, Guan C, Vinod AP, Ang KK, Tee KP. Multi-class EEG classification of voluntary hand movement directions. J Neural Eng. 2013;10(5):056018.
81. Bourguignon M, De Tiège X, Op de Beeck M, et al. Functional motor-cortex mapping using corticokinematic coherence. Neuroimage. 2011;55(4):1475-1479.
82. Jerbi K, Lachaux JP, N'Diaye K, et al. Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci U S A. 2007;104(18):7676-7681.
83. Chung JW, Ofori E, Misra G, Hess CW, Vaillancourt DE. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage. 2017;144(Pt A):164-173.
84. Tan H, Jenkinson N, Brown P. Dynamic neural correlates of motor error monitoring and adaptation during trial-to-trial learning. J Neurosci. 2014;34(16):5678-5688.
85. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485.
86. Ozdemir RA, Contreras-Vidal JL, Lee BC, Paloski WH. Cortical activity modulations underlying age-related performance differences during posture-cognition dual tasking. Exp Brain Res. 2016;234(11):3321-3334.
87. Jane Koomar, Carol Kranowitz, Stacey Szklut, Lynn Balzer-Martin. Answers to Questions Teachers Ask about Sensory Integration: Forms, Checklists, and Practical Tools for Teachers and Parents. Future Horizons, 2001
88. Cruikshank LC, Singhal A, Hueppelsheuser M, Caplan JB. Theta oscillations reflect a putative neural mechanism for human sensorimotor integration. J Neurophysiol. 2012;107(1):65-77.
89. Okada Y, Fukumoto T, Takatori K, Nagino K, Hiraoka K. Abnormalities of the first three steps of gait initiation in patients with Parkinson's disease with freezing of gait. Parkinsons Dis. 2011;2011:202937.
90. Verbruggen F, Logan GD. Response inhibition in the stop-signal paradigm. Trends Cogn Sci. 2008;12(11):418-424.
91. Peterson DS, King LA, Cohen RG, Horak FB. Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications for Physical Rehabilitation. Phys Ther. 2016;96(5):659-670.
92. Cooper NR, Croft RJ, Dominey SJ, Burgess AP, Gruzelier JH. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int J Psychophysiol. 2003;47(1):65-74.
93. Clayton MS, Yeung N, Cohen Kadosh R. The roles of cortical oscillations in sustained attention. Trends Cogn Sci. 2015;19(4):188-195
94. Gentili RJ, Bradberry TJ, Oh H, Hatfield BD, Contreras-Vidal JL. Cerebral cortical dynamics during visuomotor transformation: adaptation to a cognitive-motor executive challenge. Psychophysiology. 2011;48(6):813-824.
95. Huang CY, Su JH, Hwang IS. Rate control and quality assurance during rhythmic force tracking. Behav Brain Res. 2014;259:186-195.
96. Clayton MS, Yeung N, Cohen Kadosh R. The roles of cortical oscillations in sustained attention. Trends Cogn Sci. 2015;19(4):188-195
97. Vance RC, Healy DG, Galvin R, French HP. Dual tasking with the timed 'up go' test improves detection of risk of falls in people with Parkinson disease. Phys Ther. 2015;95(1):95-102.
98. Cardon-Verbecq C, Loustau M, Guitard E, et al. Predicting falls with the cognitive timed up-and-go dual task in frail older patients. Ann Phys Rehabil Med. 2017;60(2):83-86.
99. Ziegler K, Schroeteler F, Ceballos-Baumann AO, Fietzek UM. A new rating instrument to assess festination and freezing gait in Parkinsonian patients. Mov Disord. 2010;25(8):1012-1018.
100. Giladi N, Treves TA, Simon ES, et al. Freezing of gait in patients with advanced Parkinson's disease. J Neural Transm (Vienna). 2001;108(1):53-61.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70105-
dc.description.abstract研究背景與目的:凍凝步態是巴金森患者特有的行走異常問題,尤其於雙重作業情境下更容易誘發凍凝步態。大腦注意力資源分布能力不佳為導致具凍凝步態之巴金森患者雙重作業行走困難的關鍵因素。注意力聚焦包含「內聚焦」與「外聚焦」,是影響動作控制與學習的重要因子。研究顯示外聚焦策略可促進動作自動化控制;而內聚焦策略則可增加動作的意識控制。然而,注意力策略對於凍凝步態之巴金森患者的雙重作業行走效果尚未被探討。因此,本研究目的為探討雙重作業訓練時,以內聚焦或外聚焦策略訓練姿勢作業,何者會有較佳的雙重作業行走控制,同時也配合腦波圖量測,探討注意力聚焦策略對大腦神經可塑性的影響。
研究方法:本研究招募34位具凍凝步態巴金森氏症患者,隨機分配至內聚焦組及外聚焦組(每組各17位受試者),進行雙重作業行走訓練。訓練時,內聚焦組將注意力放置在動作本身,即注意動作的肢體或關節。外聚焦組則是將注意力放置在動作效應,即以外在環境物體為目標。訓練為一週2次,連續6週。於訓練前一週進行前測、訓練結束後一週進行後測,且於有藥效與無藥效情況皆進行評估。評估項目包括動作雙重作業行走、認知雙重作業行走、雙重作業行走時之腦波相對頻帶強度、臨床評估量表(新版世界動作障礙學會巴金森病綜合評量表第三部分、伯格氏平衡量表、雙重作業坐站起走、特定活動平衡信心量表、新式凍凝步態量表)、並紀錄訓練前2週與訓練後2週患者發生凍凝步態與跌倒之次數。
結果:經6週訓練後,內聚焦組與外聚焦組在有藥效情況下之動作雙重作業行走、認知雙重作業行走速度均有顯著增加,然內聚焦組主要是以增大步伐長度來增進速度、而外聚焦組則以增加步伐長度與步頻來增進速度。但無藥效情況下,僅內聚焦組可改善動作雙重作業行走步態(速度增加、步伐長度增加)。在腦波相對頻帶強度改變上,經訓練後在有藥效情況下,內聚焦組與外聚焦組均出現delta頻帶強度降低。在無藥效情況下執行動作雙重作業時,經訓練後內聚焦組顯著增加前額葉區alpha頻帶強度、但外聚焦組則增加前額葉與額葉區theta頻帶強度。臨床量表評估除無藥效雙重作業坐站起走僅有內聚焦組可顯著降低執行時間,其餘評估經訓練後皆有進步,但在兩組間並無顯著差異。
結論與臨床應用:本篇研究探討注意力聚焦策略對雙重作業行走訓練的影響,以及不同的注意力聚焦策略應用於雙重作業訓練的神經可塑性。研究結果顯示經6週雙重作業行走訓練,無論使用何種注意力策略,皆可有效提升有藥效下雙重作業行走速度,但考量凍凝步態患者步伐距離較短,外聚焦策略伴隨之步頻增加並非最佳行走模式。以內聚焦行走訓練策略不僅可有效增加步伐長度,且其效果也可轉移至無藥效情況下之雙重作業行走表現。臨床上,建議可以行走內聚焦方式對有凍凝步態巴金森患者進行雙重作業行走訓練,以有效提升行走安全並降低跌倒與凍凝步態發生率。
zh_TW
dc.description.abstractBackground and Purpose: Freezing of gait (FOG) is one kind of gait impairment specific in patients with Parkinson’s disease (PD). FOG is often triggered under dual-task condition. It has been reported that attentional control and movement automaticity is more impaired in PD with FOG than PD without FOG, resulting in severe declining of gait performance during dual-task walking in freezers. Attentional focus strategies include internal focus (IF) and external focus (EF), which are an important factor for motor learning and motor control. It has been reported that EF enhances movement automaticity, and IF increased conscious control of movement. However, how the attentional focus strategies affect dual task walking training in freezers hasn’t been investigated. The purpose of this study is to investigate the effects of attentional focus strategies in dual- task training on dual task walking performance and its related neural mechanism in freezers.
Methods: Thirty-four subjects of PD with FOG were recruited and randomly assigned to IF and EF groups. During dual-task walking training, the IF group was instructed to focus on body movements of the walking task; in contrast, the EF group was instructed to focus on the effects of movements on the environment or the end goal of the walking task. There were 2 training sessions each week, and lasted for 6 weeks. The performance of motor dual-task walking, cognitive dual-task walking, and related brain activity were recorded by 64-channel electroencephalogram (EEG) at one week before the start of intervention (pre-test) and one week after the end of intervention (post-test) under both ON and OFF medication states. In addition, clinical evaluation including Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III, Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), dual-task timed up and go (TUG), New Freezing of Gait Questionnaire (NFOG-Q), and occurrence of FOG and fall were also assessed.
Results: After 6-weeks dual-task training, both the IF and EF groups increased gait velocity in motor dual-task walking and cognitive dual-task walking under ON medication state. However, the IF group increased gait velocity by increased step length, but the EF group increased gait velocity by increased step length and cadence. In motor dual-task walking under OFF medication state, only the IF group increased gait velocity and step length. In terms of brain activity related to dual-task walking, both IF and EF groups decreased delta power after 6-weeks intervention. When performing motor dual-task walking under OFF medication state, the IF group increased alpha power in prefrontal cortex, but the EF group increased theta power in prefrontal and frontal cortices after intervention. For each clinical evaluation, both IF and EF groups showed improvements except that only the IF group reduced time duration when performing dual-task TUG under OFF medication state.
Conclusion and Clinical Applications: This study investigated the application of attentional focus theory on dual-task walking. According to our results, although both IF and EF attentional strategies led to improvements in dual-task walking control under ON medication state, only the IF group could transfer the training benefits to OFF medication state. In clinic, the IF strategy was suggested to be an effective and safe movement strategy of dual-task walking training for improving dual-task walking under both ON and OFF medication states, and reducing occurrences of FOG and falling.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:43:45Z (GMT). No. of bitstreams: 1
U0001-1708202019274300.pdf: 2652385 bytes, checksum: bef5a715a198a708803e704782f6f305 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
List of Abbreviations x
List of Figures xi
List of Tables xiv
Chapter 1. Introduction 1
1.1 Overview of Dual-task Interference in Parkinson’s Disease with freezing of gait………………………………………………………… 1
1.2 Relative Literature 2
1.2.1 Freezing of gait in Parkinson’s Disease……………. 2
1.2.2 Dual task walking in Parkinson’s Disease 4
1.2.3 The relationship between ambulation training and gait performance
in Parkinson’s Disease with freezing of gait 6
1.2.4 Characteristics of attentional focus strategies 9
1.2.5 Limitation of previous study about walking training in Parkinson’s
Disease with freezing of gait 12
1.3 Purpose and Significance 15
1.4 Hypothesis 15
Chapter 2. Method 17
2.1 Participants 17
2.2 Study procedure 18
2.2.1 Experimental design and procedure ..18
2.2.2 Assessment session 18
2.2.3 Intervention session 19
2.3 System set-up and data recording 20
2.4 Data analysis 21
2.4.1 Behavioral data 21
2.4.2 Brain activity data 21
2.5 Statistical analysis 22
Chapter 3. Results 24
3.1 Gait performance of single-task and dual-task walking 24
3.1.1 Single-task walking 24
3.1.2 Motor dual-task walking 26
3.1.3 Cognitive dual-task walking 28
3.2 EEG relative power of dual-task walking 30
3.2.1 Motor dual-task walking 30
3.2.2 Cognitive dual-task walking 31
3.3 Clinical evaluation 32
Chapter 4. Discussion 34
4.1 Compared the training effect on Gait Performance between IF and EF
Groups 34
4.2 Training-Induced Changes in Brain Activity under Dual-task Walking 37
4.3 Compared the Clinical Evaluation between IF and EF Groups 40
4.4 Study Limitations and Methodology Concerns 42
Chapter 5. Conclusion 44
References 45
Figures 53
Tables 76
Appendices 83
Appendix 1. Research approval of National Taiwan University Hospital Research Ethics Committee 83
dc.language.isoen
dc.subject雙重作業訓練zh_TW
dc.subject凍凝步態zh_TW
dc.subject腦波圖zh_TW
dc.subject巴金森zh_TW
dc.subject注意力聚焦zh_TW
dc.subjectParkinsonen
dc.subjectDual-task trainingen
dc.subjectAttentional focusen
dc.subjectFreezing of gaiten
dc.subjectElectroencephalographyen
dc.title姿勢注意力聚焦策略對雙重作業行走訓練之影響:
以具凍凝步態之巴金森患者為例
zh_TW
dc.titleEffects of Attentional Focus Strategies of Posture on Dual-task Walking Training: Parkinson’s Disease with Freezing of Gaiten
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞美(Ruey-Meei Wu),周立偉(Li-Wei Chou),李亞芸(Ya-Yun Lee)
dc.subject.keyword雙重作業訓練,注意力聚焦,巴金森,凍凝步態,腦波圖,zh_TW
dc.subject.keywordDual-task training,Attentional focus,Parkinson,Freezing of gait,Electroencephalography,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202003843
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-1708202019274300.pdf
  未授權公開取用
2.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved