請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70071
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林寶秀(Bau-Show Lin) | |
dc.contributor.author | Ching-Wen Chen | en |
dc.contributor.author | 陳靖玟 | zh_TW |
dc.date.accessioned | 2021-06-17T03:41:56Z | - |
dc.date.available | 2022-07-19 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-17 | |
dc.identifier.citation | 1. 行政院環保署. (2003). 空氣污染物排放清冊TEDS5.1. 臺北:行政院環保署. 2. 行政院環保署. (2013). 細懸浮微粒(PM2.5)時空分佈特性之研究. 臺北:行政院環保署. 3. 李明晃. (2004). 都市公園與局地氣溫效應之關係研究-以台北市公園為例,中國文化大學景觀研究所碩士論文. 4. 李建鋒. (2008). 校園戶外環境熱舒適之研究-以大學、小學為例. 逢甲大學建築學系碩士論文. 5. 林巧婷. (2015). 都市公園空間分布型態對降溫效益影響之研究. 臺灣大學園藝暨景觀學系學位論文. 1-106. 6. 林炯明. (2010). 都市熱島效應之影響及其環境意涵. 環境與生態學報. 3(1). 1-15. 7. 林寶秀. (2010). 植栽綠地降溫效果之研究. 臺灣大學園藝學研究所學位論文. 1-137. 8. 張嘉云. (2016). 都市公園環境屬性對於微氣候及熱舒適度之影響. 臺灣大學園藝暨景觀學系學位論文. 1-120. 9. 莊家梅. (2008). 夏季戶外空間熱舒適性之研究-以台南縣市, 高雄市戶外空間為研究對象. 成功大學建築學系學位論文. 1-124. 10. 陳啟中. (1996). 建築物理概論. 台北:詹氏書局 11. 陳慶融, 邱英浩. (2015). 植栽對戶外熱舒適之影響研究. 建築學報. (92). 43-60. 12. 鄭福田. (2004). 工程小叢書—環境工程系列:空氣品質. 財團法人中興工程. 13. 科技研究發展基金會 14. 鄭福田. (2006). 台北都會區二次光化污染物密集監測計畫. 行政院環保署. 15. 鄭得妤. (2017). 亞熱帶都市公園綠地結構規劃方式對人體熱舒適度之影響. 臺北科技大學 建築系建築與都市設計碩士班學位論文. 1-84. 16. Akbari, H., Pomerantz, M., Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295-310. 17. Al horr, Y., Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5(1), 1-11. 18. Ali-Toudert, F., Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108. 19. Annett et al. (2010). Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. Journal of Environmental Management, 94, 91-101. 20. ASHRAE. (1992). ASHRAE standard 55: Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers(ASHRAE), Inc. 21. ASHRAE. (2005). ASHRAE Handbook Fundamentals (SI ed.). Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers(ASHRAE), Inc. 22. Baldauf, R., Thoma, E., Hays, M., Shores, R., Kinsey, J., Gullett, B., . . . Bang, J. (2008). Traffic and Meteorological Impacts on Near-Road Air Quality: Summary of Methods and Trends from the Raleigh Near-Road Study. Journal of the Air Waste Management Association, 58(7), 865-878. 23. Bocquier, A., Cortaredona, S., Boutin, C., David, A., Bigot, A., Sciortino, V., . . . Verger, P. (2014). Is exposure to night-time traffic noise a risk factor for purchase of anxiolytic-hypnotic medication? A cohort study. European Journal of Public Health, 24(2), 298-303. 24. Bourbia, F., Awbi, H. B. (2004). Building cluster and shading in urban canyon for hot dry climate: Part 2: Shading simulations. Renewable Energy, 29(2), 291-301. 25. Brager, G. S., Fountain, M.E., Benton, C.C., Arens, E.A., Bauman, F.S. (1994). A comparison of methods for assessing thermal sensation and acceptability in the field. Oseland, N.A., Humphreys, M.A. (Eds.), Thermal Comfort: Past, Present and Future (pp. 17-39). Garston, UK: Building Research Establishment. 26. Brook, R. D., Franklin, B., Cascio, W., Hong, Y. L., Howard, G., Lipsett, M., . . . Tager, I. (2004). Air pollution and cardiovascular disease - A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109(21), 2655-2671. 27. Bruse, M. (2007) Particle Filtering Capacity of Urban Vegetation: a Microscale Numerical Approach. Berliner Geographische Arbeiten, 109, 61-70. 28. Carles, J. L., Barrio, I. L., de Lucio, J. V. (1999). Sound influence on landscape values. Landscape and Urban Planning, 43(4), 191-200. 29. Chan, S. Y., Chau, C. K., Leung, T. M. (2017). On the study of thermal comfort and perceptions of environmental features in urban parks: A structural equation modeling approach. Building and Environment, 122, 171-183. 30. Chen, L., Ng, E. (2012). Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29(2), 118-125. 31. Coccolo, S., Kämpf, J., Scartezzini, J. L., Pearlmutter, D. (2016). Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 18, 33-57. 32. Daisey, J. M., Angell, W. J., Apte, M. G. (2003). Indoor air quality,ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 13(1), 53. 33. De Giuli, V., Da Pos, O., De Carli, M. (2012). Indoor environmental quality and pupil perception in Italian primary schools. Building and Environment, 56, 335-345. 34. Deguen, S., Segala, C., Pedrono, G., Mesbah, M. (2012). A New Air Quality Perception Scale for Global Assessment of Air Pollution Health Effects. Risk Analysis, 32(12), 2043-2054. 35. Forsberg, B., Stjernberg, N., Wall, S. (1997). People can detect poor air quality well below guideline concentrations: A prevalence study of annoyance reactions and air pollution from traffic. Occupational and Environmental Medicine, 54(1), 44-48. 36. Frontczak, M., Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922-937. 37. Gagge, A. P., Fobelets, A. P., Berglund, L. (1986). A standard predictive index of human response to the thermal environment. ASHRAE trans, 92(2), 709-731. 38. Gromke, C., Ruck, B. (2012). Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions. Boundary-Layer Meteorology, 144(1), 41-64. 39. Halonen, J. I., Lanki, T., Yli-Tuomi, T., Turunen, A. W., Pentti, J., Kivimaki, M., Vahtera, J. (2014). Associations of traffic noise with self-rated health and psychotropic medication use. Scandinavian Journal of Work Environment Health, 40(3), 235-243. 40. Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. 41. Höppe, P. R. (1993). Heat balance modelling. Experientia, 49(9), 741-746. 42. ISO, International Standard 7730, Moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Geneva: International Standard Organization, 1994. 43. J.P. Cowan. (1994). Handbook of environmental acoustics. Van Nostrand Reinhold, New York. 44. Karimi Afshar, N., Karimian, Z., Doostan, R., Habibi Nokhandan, M. (2018). Influence of planting designs on winter thermal comfort in an urban park. Journal of Environmental Engineering and Landscape Management, 26(3), 232-240. 45. Klemm, W., Heusinkveld, B. G., Lenzholzer, S., Jacobs, M. H., Van Hove, B. (2015). Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Building and Environment, 83, 120-128. 46. Krüger, E. L., Minella, F. O., Rasia, F. (2011). Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46(3), 621-634. 47. Lai, D., Zhou, C., Huang, J., Jiang, Y., Long, Z., Chen, Q. (2014). Outdoor space quality: A field study in an urban residential community in central China. Energy and Buildings, 68, 713-720. 48. Lee, H., Mayer, H., Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37-50. 49. M. Navai, J.A. Veitch. (2003). Acoustic satisfaction in open-plan offices: review and recommendations. Research Report RR-151. Institute for Research in Construction, National Research Council Canada, Ottawa, Canada. 50. Matzarakis, A., Rutz, F., Mayer, H. (2007). Modelling Radiation fluxes in simple and complex environments – Application of the RayMan model. International Journal of Biometeorology 51, 323-334. 51. Matzarakis, A., Rutz, F., Mayer, H. (2010). Modelling Radiation fluxes in simple and complex environments – Basics of the RayMan model. International Journal of Biometeorology 54, 131-139. 52. Mayer, H., Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38(1), 43-49. 53. Nikolopoulou, M., Kleissl, J., Linden, P. F., Lykoudis, S. (2011). Pedestrians' perception of environmental stimuli through field surveys: Focus on particulate pollution. Science of The Total Environment, 409(13), 2493-2502. 54. Okokon, E. O., Yli-Tuomi, T., Turunen, A. W., Tiittanen, P., Juutilainen, J., Lanki, T. (2018). Traffic noise, noise annoyance and psychotropic medication use. Environment International, 119, 287-294. 55. Ortiz, M. A., Kurvers, S. R., Bluyssen, P. M. (2017). A review of comfort, health, and energy use: Understanding daily energy use and wellbeing for the development of a new approach to study comfort. Energy and Buildings, 152, 323-335. 56. Ow, L. F., Ghosh, S. (2017). Urban cities and road traffic noise: Reduction through vegetation. Applied Acoustics, 120, 15-20. 57. Pantavou, K., Lykoudis, S., Psiloglou, B. (2017). Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach. Science of The Total Environment, 574, 663-670. 58. Peng, Y., Feng, T., Timmermans, H. (2019). A path analysis of outdoor comfort in urban public spaces. Building and Environment, 148, 459-467. 59. Salata, F., Golasi, I., de Lieto Vollaro, R., de Lieto Vollaro, A. (2016). Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and Environment, 96, 46-61. 60. Shishegar, N. (2013). Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflow and Solar Access in Urban Canyons. Journal of Clean Energy Technologies, 1, 52. 61. Sodoudi, S., Zhang, H., Chi, X., Müller, F., Li, H. (2018). The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry Urban Greening, 34, 85-96. 62. Spagnolo, J., Dear, R. (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment, 38(5), 721-738. 63. Stathopoulos, T., Wu, H., Zacharias, J. (2004). Outdoor human comfort in an urban climate. Building and Environment, 39(3), 297-305. 64. Tan, Z., Lau, K. K.-L., Ng, E. (2017). Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment, 120, 93-109. 65. Tsuyoshi, H. (2009). Thermal comfort in outdoor environment. Global Environmental Research, 43-47. 66. Van Renterghem, T., Forssén, J., Attenborough, K., Jean, P., Defrance, J., Hornikx, M., Kang, J. (2015). Using natural means to reduce surface transport noise during propagation outdoors. Applied Acoustics, 92, 86-101. 67. Wargocki, P. (1999). Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air, 9(3), 165-179. 68. Williams, I. D., Bird, A. (2003). Public perceptions of air quality and quality of life in urban and suburban areas of London. Journal of Environmental Monitoring, 5(2), 253-259. 69. Yahia, M. W., Johansson, E., Thorsson, S., Lindberg, F., Rasmussen, M. I. (2018). Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. International Journal of Biometeorology, 62(3), 373-385. 70. Yang, W., Kang, J. (2005). Acoustic comfort evaluation in urban open public spaces. Applied Acoustics, 66(2), 211-229. 71. Yang, W., Moon, H. J. (2019). Combined effects of acoustic, thermal, and illumination conditions on the comfort of discrete senses and overall indoor environment. Building and Environment, 148, 623-633. 72. Zhang, H., Wang, Y., Li, S., Tang, H., Liu, X., Wang, Y. (2015). Study on the Influence of the Street Side Buildings on the Pollutant Dispersion in the Street Canyon. Procedia Engineering, 121, 37-44. 73. Zhang, Y., Zhao, R. (2008). Overall thermal sensation, acceptability and comfort. Building and Environment, 43(1), 44-50. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70071 | - |
dc.description.abstract | 近年來隨著生活水準的要求提升,人們對於環境舒適性的要求也相對提高,城市中最貼近人的戶外空間莫過於街道,且文獻指出戶外的微氣候產生熱環境,對舒適度有顯著影響,然而除了溫度的影響外,近期有些學者開始討論起環境舒適度的影響因子,如聲音、空氣品質等因素也對環境的舒適感受有所影響,而這部分在國內的研究中較少看到,也鮮少戶外街道的相關研究 。 文獻指出街道的走向、高寬比、植栽綠覆率、天空可視率等因素會影響微氣候,街道寬度、植栽綠化等因素會影響空氣品質,植栽與街道寬度對噪音有影響,不同的街道環境屬性會有不同的微氣候、空氣品質及環境音量,且人對環境舒適的評價受到環境中的熱、空氣品質及聲音等刺激影響,形成熱感知、空氣品質感知、音量感知,因此,本研究認為,戶外街道舒適感受的影響因子應該同時探討環境中的微氣候、空氣品質及環境音量,以瞭解都市街道中微氣候、空氣品質及環境音量對行人舒適感受的影響、各感知與舒適感受的關係,並得知街道環境屬性對熱環境、空氣品質之影響,再於後續歸納出行人感到舒適的街道環境屬性。 本研究以台北市大安區街道為研究地點,根據街道寬度、街道走向、綠覆率、天空可視率及植栽狀況,選定六個研究測點, 觀測不同環境屬性下街道的微氣候、空氣品質及音量,並同時發放問卷, 調查行人對當下環境的熱感知、空氣品質感知、音量感知及整體舒適感受。量測與調查時間為無雨天候的上午8點至下午6點,進一步分析相關性。 結果顯示,在實際量測值方面,不同街道環境屬性有顯著差異,微氣候之量測值與熱感知有顯著相關、環境音量之量測值與音量感知也有顯著相關,但空氣污染物濃度與空氣品質感知在熱季期間沒有發現關係。逐步迴歸之預測模型顯示行人在都市街道上的舒適感受在不同季節會受到不同因子的影響,但影響最大的是空氣品質感知、其次是音量感知、熱感知。若行人認為街道環境的空氣品質良好、環境安靜,整體舒適感受則會提升。而熱感知越小,表示行人感覺越冷時,熱季期間之舒適感受較好,涼季期間則會感到不舒適。 而微氣候、空氣品質與音壓級量測值對整體舒適感受的影響,在涼季期間較明顯,臭氧濃度與一氧化碳濃度越低,會有越好的舒適感受;個人特徵對整體舒適感受的影響,在熱季期間較明顯,身體有不舒服(有症狀)以及有抽菸習慣的人,會比身體無症狀且無抽菸習慣的人,有更不好的舒適感受。 故行人的舒適感受評價受到多種環境感知影響,各感知與實質微氣候、空氣品質及音量有顯著相關,且實質微氣候、空氣品質及音量受到街道環境屬性之影響,因此,在戶外舒適度的評估上應考慮道路環境的規劃或加以改善,以提升人民的生活品質。 | zh_TW |
dc.description.abstract | With the improvement of living standards, the requirements of environmental comfort also increased. Streets are the most closest outdoor space for people, and the literature points out that outdoor microclimate influences thermal envrionment, which has a significant impact on comfort. In addition to the influence of temperature, some scholars have recently discussed the other factors of environmental comfort, such as sound level, air quality, etc. However, this part is rarely seen in domestic research, and there are few related researches on outdoor streets. The literature indicates that factors such as street orientation, aspect ratio, green coverage, and sky view factor will affect microclimate. Street width, planting and other factors will affect air quality, planting and street width have an impact on noise. The microclimate, air quality and acoustic environment differs from the street environmental attributes, and people’s evaluation of environmental comfort, including thermal perception, air quality perception, and acoustic perception is affected by stimuli such as heat, air quality and sound in the environment. In order to understand the impact of microclimate, air quality and acoustic environment in urban streets on pedestrian comfort, the relationship between perceptions and comfort, and the impact of street environment attributes on thermal environment and air quality, this study considers the factors mentioned above at the same time. This study measured the microclimate, air quality and sound level of the street under different environmental attributes from 8 a.m. to 6 p.m. during the non-rainy weather, and investigate pedestrians’ perception through questionnaires. The results show that the measured value of microclimate is significantly related to thermal perception, and sound level is also significantly related to acoustic perception, but the air quality perception did not find a relationship with the concentration of air pollutants. The predictive model of stepwise regression shows that the overall comfort of pedestrians on urban streets will be affected by different factors in different seasons, but the most influential is air quality perception, acoustic perception and thermal comfort. The comfort of pedestrians is affected by a variety of environmental perceptions. Each perception is significantly related to the actual microclimate, air quality, and sound level. The actual microclimate, air quality, and sound level are affected by the attributes of the street environment. Therefore, the road environment plannings or improvements should be considered in the evaluation of outdoor comfort to improve the quality of life of the people. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:41:56Z (GMT). No. of bitstreams: 1 U0001-1708202019541600.pdf: 26172794 bytes, checksum: c8b6767b2ef54de420cfd52124dfd51e (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘 要 V ABSTRACT VII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究流程 3 第二章 文獻回顧 5 第一節 微氣候、空氣品質、音量 5 一、都市微氣候 5 二、空氣品質 7 三、音量 11 第二節 影響微氣候、空氣品質與環境音量的環境屬性 13 一、影響街道微氣候的環境因子 13 二、影響街道空氣品質的環境因子 15 三、影響街道環境音量的環境因子 16 第三節 影響舒適感受的因素 17 一、舒適感受的影響因子 17 二、相關實證研究 24 第三章 研究方法 27 第一節 研究架構與內容 27 一、研究架構 27 二、研究變項定義 28 三、研究假設 29 第二節 研究地點 30 第三節 微氣候、空氣品質、環境音量測量方法 34 一、測量時間 34 二、測量儀器位置 34 三、量測調查項目 35 第四節 行人感受調查 36 一、調查方法 36 二、問卷設計 37 第五節 資料處理與分析方法 38 一、資料取得及處理 38 二、資料分析及檢定 39 第四章 研究結果與討論 41 第一節 調查狀況說明 41 一、微氣候、空氣品質、音量 42 二、行人感知問卷調查 54 三、生理等效溫度 59 第二節 環境屬性對微氣候、空氣品質及音量之影響 61 一、街道環境屬性對微氣候之影響 61 二、街道環境屬性對空氣品質之影響 67 三、街道環境屬性對環境音量之影響 73 第三節 微氣候、空氣品質、環境音量對行人感知之影響 75 一、微氣候與熱感知、懸浮微粒感知、空氣品質感知之關係 75 二、空氣品質與懸浮微粒感知、空氣品質感知之關係 76 三、環境音量與音量感知之關係 78 第四節 整體舒適感受之關係檢定 79 一、微氣候、空氣品質、環境音量與整體舒適感受之關係 79 二、各行人感知與整體舒適感受之關係 81 三、個人特徵與整體舒適感受之關係 81 四、逐步迴歸分析 83 第五章 結論與建議 89 第一節 結論 89 一、街道環境屬性對微氣候、空氣品質的影響 89 二、微氣候、空氣品質、環境音量對行人感知的影響 93 三、行人感知對整體舒適感受的影響 93 四、影響整體舒適感受的因素 94 第二節 建議 97 參考文獻 99 附錄一 105 附錄二 107 | |
dc.language.iso | zh-TW | |
dc.title | 都市街道微氣候與空氣品質及行人舒適感知之研究 | zh_TW |
dc.title | The Study of Microclimate, Air Quality and Perception of Pedestrians in Urban Street | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林晏州(Yann-Jou Lin),張俊彥(Chun-Yen Chang),侯錦雄(Jing-Shoung Hou),謝正義(Cheng-I Hsieh) | |
dc.subject.keyword | 環境屬性,微氣候,空氣品質,音量,熱舒適,戶外舒適, | zh_TW |
dc.subject.keyword | Environmental attributes,Microclimate,Air quality,Sound level,Thermal comfort,Outdoor comfort, | en |
dc.relation.page | 109 | |
dc.identifier.doi | 10.6342/NTU202003850 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202019541600.pdf 目前未授權公開取用 | 25.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。