Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童國倫(Kuo-Lun Tung)
dc.contributor.authorChien-Hua Chenen
dc.contributor.author陳建樺zh_TW
dc.date.accessioned2021-06-17T03:41:36Z-
dc.date.available2023-03-12
dc.date.copyright2018-03-12
dc.date.issued2018
dc.date.submitted2018-02-07
dc.identifier.citation[1] W.J. Koros, Y.H. Ma, T. Shimidzu., Terminology for membranes and membrane processes (IUPAC Recommendations 1996), Pure Appl. Chem. 68 (1996) 1479–1489.
[2] A.F.M. Leenaars, A.J. Burggraaf, The preparation and characterization of alumina membranes with ultrafine pores. 2. The formation of supported membranes, J. Colloid Interface Sci. 105 (1985) 27–40.
[3] R.J.R. Uhlhorn, M.H.B.J. Huis In't Veld, K. Keizer, A.J. Burggraaf, High permselectivities of microporous silica-modified y-alumina membranes, J. Mater. Sci. Lett. 8 (1989) 1135–138.
[4] F.M. Tiller, C.D. Tsai, Theory of Filtration of Ceramics: I, Slip Casting, J. Am. Ceram. Soc. 69 (1986) 882–887.
[5] A. Larbot, Chapter 5. Ceramic processing techniques of support systems for membranes synthesis, in: A.J. Burggraaf, L. Cot (Eds.), Fundam. Inorg. Membr. Sci. Technol., Elsevier, 1996: pp. 119–139.
[6] M. Sahibzada, B.C.H. Steele, K. Hellgardt, D. Barth, A. Effendi, D. Mantzavinos, I.S. Metcalfe, Intermediate temperature solid oxide fuel cells operated with methanol fuels, Chem. Eng. Sci. 55 (2000) 3077–3083.
[7] K.H. Lee, Y.M. Kim, Asymmetric hollow inorganic membranes, Key Eng. Mater. 61 (1991) 17–22.
[8] X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Memb. Sci. 188 (2001) 87–95.
[9] B.F.K. Kingsbury, Z.T. Wu, K. Li, A morphological study of ceramic hollow fibre membranes: A perspective on multifunctional catalytic membrane reactors, Catal. Today. 156 (2010) 306–315.
[10] X.Y. Tan, S.M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Memb. Sci. 188 (2001) 87–95.
[11] L. Bergström, Rheological Properties of Concentrated, Nonaqueous Silicon Nitride Suspensions, J. Am. Ceram. Soc. 79 (1996) 3033–3040.
[12] J.S. Chong, E.B. Christiansen, A.D. Baer , Rheology of Concentrated Suspensions, J. Appl. Polym. Sci. 15 (1971) 2007–1021.
[13] L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing, Taylor & Francis, 2017.
[14] T. Kitano, T. Kataoka, T. Shirota, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta. 20 (1981) 207–209.
[15] S. Sakka, Rheology of sols in sol-gel processing, in: M.A. Aegerter (Ed.), Sol-Gel Sci. Technol., World Scientific, Singapore, 1989: pp. 76–103.
[16] S.P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes, J. Memb. Sci. 150 (1998) 75–85.
[17] S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane, in: Saline Water Conversion—II, n.d.: pp. 117–132.
[18] D.W. Richardson, Morden Ceramic Engineering, Marcel Dekker Inc, New York, 1992.
[19] J.G.P. Binner, Advanced Ceramic Processing and Technology, Noyes Publications, New Jersey, 1990.
[20] O. Falk-Pedersen, H Dannstrom, Method for removing carbon dioxide from gases, US Patent 6,228,145, 2001.
[21] F. Wiesler, R. Sodaro, Deaeration - Degasification of Water Using Novel Membrane Technology, Ultrapure Water. 35 (1996) 53–56.
[22] J.K.R. Page, D.G. Kalthod, Control of dissolved gases in recirculation systems, US Patent 5,565,149, 1996.
[23] K. Honda, M. Yamashita, Method for deaerating liquid products, US Patent 5,522,917, 1996.
[24] Z. Qi, Microporous hollow fibers for gas absorption I. Mass transfer in the liquid, J. Memb. Sci. 23 (1985) 321–332.
[25] Z. Qi, E.L. Cussler, Microporous hollow fibers for gas absorption II. Mass transfer across the membrane, J. Memb. Sci. 23 (1985) 333–345.
[26] A.E. Jansen, P.H.M. Feron, J.H. Hanemaaijer, P. Huisjes, Apparatus and method for performing membrane gas/liquid absorption at elevated pressure, US Patent 6,355,092, 2002.
[27] D.T. Tsou, M.W. Blachman, J.C. Davis, Silver-facilated olefin/paraffin separation in a liquid membrane contactor system, Ind. Eng. Chem. Res. 33 (1994) 3209–3216.
[28] R.J. Valus, R. Eshraghi, A.E. Velikoff, J.C. Davis, High pressure facilitated membranes for selective separation and process for the use thereof, US Patent 5,057,641, 1991.
[29] D.G. Bessarabov, R.D. Sanderson, E.P. Jacobs, I.N. Beckman, High-efficiency separation of an ethylene/ethane mixture by a large-scale liquid-membrane contactor containing flat-sheet nonporous polymeric gas-separation membranes and a selective flowing-liquid absorbent, Ind. Eng. Chem. Res. 34 (1995) 1769–1778.
[30] R. Prasad, K.K. Sirkar, Membrane based solvent extraction, in: W.S.W. Ho and K.K. Sirkar (Ed.), Membr. Handb., Van Nostrand Reinhold, New York, 1992: pp. 727–763.
[31] K. Schneider, W. Hölz, R. Wollbeck, S. Ripperger, Membranes and modules for transmembrane distillation, J. Memb. Sci. 39 (1988) 25–42.
[32] K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Memb. Sci. 124 (1997) 1–25.
[33] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Memb. Sci. 285 (2006) 4–29.
[34] S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, J. Memb. Sci. 323 (2008) 85–98.
[35] F.B. Leitz, Piezodialysis, in: P. Meares (Ed.), Membr. Sep. Process., Elsevier Scientific Pub. Co., Amsterdam, 1976: pp. 261–294.
[36] C.R. Gardner, J.N. Weinstein, S. Roy Caplan, Transport properties of charge-mosaic membranes III. Piezodialysis, Desalination. 12 (1973) 19–33.
[37] O. Falk-Pedersen, M.S. Grønvold, P. Nøkleby, F. Bjerve, H.F. Svendsen, CO2 Capture with Membrane Contactors, Int. J. Green Energy. 2 (2005) 157–165.
[38] S. Zhao, P.H.M. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, J. Hou, V. Chen, H. Qi, Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments, J. Memb. Sci. 511 (2016) 180–206.
[39] A. Gabelman, S.T. Hwang, Hollow fiber membrane contactors, J. Memb. Sci. 159 (1999) 61–106.
[40] P.H.M. Feron, A.E. Jansen, R. Klaassen, Membrane technology in carbon dioxide removal, Energy Convers. Manag. 33 (1992) 421–428.
[41] Y.-F. Lin, C.-H. Chen, K.-L. Tung, T.-Y. Wei, S.-Y. Lu, K.-S. Chang, Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements, ChemSusChem. 6 (2013) 437–442.
[42] Y.F. Lin, C.C. Ko, C.H. Chen, K.L. Tung, K.S. Chang, T.W. Chung, Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors, Appl. Energy. 129 (2014) 25–31.
[43] Y.F. Lin, C.C. Ko, C.H. Chen, K.L. Tung, K.S. Chang, Reusable methyltrimethoxysilane-based mesoporous water-repellent silica aerogel membranes for CO2 capture, RSC Adv. 4 (2014) 1456–1459.
[44] Y.F. Lin, J.M. Chang, Q. Ye, K.L. Tung, Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors, Appl. Energy. 154 (2015) 21–25.
[45] B.R. Bodeli, Silicone rubber vapor diffusion in saline water distillation, US Patent 285,032, 1963.
[46] D.R. Paul, D.R. Kemp, The diffusion time lag in polymer membranes contaning adsorptive fillers, J. Polym. Sci. Polym. Symp. 41 (1973) 79–93.
[47] D.R. Kemp, D.R. Paul, Gas sorption in polymer membranes containing adsorptive fillers, J. Polym. Sci. Polym. Phys. 12 (1974) 485–500.
[48] D.L. Wernick, E.J. Osterhuber, Permeation through a single crystal of Zeolite NaX, J. Memb. Sci. 22 (1985) 137–146.
[49] H. Suzuki, Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof, US Patent 4,699,892, 1987.
[50] Y.S. Lin, I. Kumakiri, B.N. Nair, H. Alsyouri, Microporous inorganic membranes, Sep. Purif. Methods. 31 (2002) 229–379.
[51] N.A. Kosinov, High-silica zeolite membranes for gas and liquid separation, Ph.D. thesis, 2014.
[52] J. Caro, Are MOF membranes better in gas separation than those made of zeolites?, Curr. Opin. Chem. Eng. 1 (2011) 77–83.
[53] M. Tawalbeh, F.H. Tezel, B. Kruczek, S. Letaief, C. Detellier, Synthesis and characterization of silicalite-1 membrane prepared on a novel support by the pore plugging method, J. Porous Mater. 20 (2013) 1407–1421.
[54] S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O.P. Prokopova, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, J.A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis - Preparation and morphological characterisation, J. Memb. Sci. 281 (2006) 228–238.
[55] K. Iyoki, K. Itabashi, T. Okubo, Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents, Microporous Mesoporous Mater. 189 (2014) 22–30.
[56] E.R. Geus, H. Vanbekkum, Calcination of large MFI-type single crystals, Part 2: Crack formation and thermomechanical properties in view of the preparation of zeolite membranes, Zeolites. 15 (1995) 333–341.
[57] S. Heng, P.P.S. Lau, K.L. Yeung, M. Djafer, J.C. Schrotter, Low-temperature ozone treatment for organic template removal from zeolite membrane, J. Memb. Sci. 243 (2004) 69–78.
[58] J. Kuhn, S. Sutanto, J. Gascon, J. Gross, F. Kapteijn, Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation, J. Memb. Sci. 339 (2009) 261–274.
[59] A. Huang, J. Caro, Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H2 selectivity prepared by secondary growth using Kryptofix 222 as SDA, Chem. Commun. 46 (2010) 7748.
[60] J. Hedlund, M. Noack, P. Kölsch, D. Creaser, J. Caro, J. Sterte, ZSM-5 membranes synthesized without organic templates using a seeding technique, J. Memb. Sci. 159 (1999) 263–273.
[61] W. Yuan, Y.S. Lin, W. Yang, Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers, J. Am. Chem. Soc. 126 (2004) 4776–4777.
[62] J.H. Dong, Y.S. Lin, M.Z.C. Hu, R.A. Peascoe, E.A. Payzant, Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes, Microporous Mesoporous Mater. 34 (2000) 241–253.
[63] J. Choi, H.K. Jeong, M.A. Snyder, J.A. Stoeger, R.I. Masel, M. Tsapatsis, Grain boundary defect elimination in a zeolite membrane by rapid thermal processing, Science 325 (2009) 590–593.
[64] T. Lee, J. Choi, M. Tsapatsis, On the performance of c-oriented MFI zeolite Membranes treated by rapid thermal processing, J. Memb. Sci. 436 (2013) 79–89.
[65] H.T. Chien, M.C. Chen, P.S. Huang, J.Y. Lai, C.C. Hsu, D.Y. Kang, Reactive atmospheric pressure plasma for highly efficient removal of structure-directing agents from zeolite thin films., Chem. Commun. 51 (2015) 13910–3.
[66] N. Kosinov, J. Gascon, F. Kapteijn, E.J.M. Hensen, Recent developments in zeolite membranes for gas separation, J. Memb. Sci. 499 (2016) 65–79.
[67] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous Mesoporous Mater. 82 (2005) 1–78.
[68] C. Ji, Y. Tian, Y. Li, Y.S. Lin, Thin oriented AFI zeolite membranes for molecular sieving separation, Microporous Mesoporous Mater. 186 (2014) 80–83.
[69] J. O’Brien-Abraham, M. Kanezashi, Y.S. Lin, Effects of adsorption-induced microstructural changes on separation of xylene isomers through MFI-type zeolite membranes, J. Memb. Sci. 320 (2008) 505–513.
[70] C.D. Baertsch, H.H. Funke, J.L. Falconer, R.D. Noble, Permeation of aromatic hydrocarbon vapors through silicalite-zeolite membranes, J. Phys. Chem. 100 (1996) 7676–7679.
[71] M.Y. Jeon, D. Kim, P. Kumar, P.S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H.S. Lee, K. Narasimharao, S.N. Basahel, S. Al-Thabaiti, W. Xu, H.J. Cho, E.O. Fetisov, R. Thyagarajan, R.F. Dejaco, W. Fan, K.A. Mkhoyan, J.I. Siepmann, M. Tsapatsis, Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets, Nature. 543 (2017) 690–694.
[72] X. Shu, X. Wang, Q. Kong, X. Gu, N. Xu, High-Flux MFI Zeolite Membrane Supported on YSZ Hollow Fiber for Separation of Ethanol/Water, Ind. Eng. Chem. Res. 51 (2012) 12073–12080.
[73] S. Xia, Y. Peng, Z. Wang, Microstructure manipulation of MFI-type zeolite membranes on hollow fibers for ethanol-water separation, J. Memb. Sci. 498 (2016) 324–335.
[74] R. Zhou, E.W. Ping, H.H. Funke, J.L. Falconer, R.D. Noble, Improving SAPO-34 membrane synthesis, J. Memb. Sci. 444 (2013) 384–393.
[75] J.K. Das, N. Das, S. Bandyopadhyay, Highly oriented improved SAPO-34 membrane on low cost support for hydrogen gas separation, J. Mater. Chem. A. 1 (2013) 4966.
[76] M.L. Carreon, S. Li, M.A. Carreon, AlPO-18 membranes for CO2/CH4 separation, Chem. Commun. 48 (2012) 2310–2312.
[77] S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima, S. Yoshida, Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures, Ind. Eng. Chem. Res. 46 (2007) 6989–6997.
[78] P. Ye, E. Sjöberg, J. Hedlund, Air separation at cryogenic temperature using MFI membranes, Microporous Mesoporous Mater. 192 (2014) 14–17.
[79] T.C.T. Pham, H.S. Kim, K.B. Yoon, Growth of uniformly oriented silica MFI and BEA zeolite films on substrates, Science 334 (2011) 1533–1538.
[80] V.A. Tuan, R.D. Noble, J.L. Falconer, Boron-substituted ZSM-5 membranes: Preparation and separation performance, AIChE J. 46 (2000) 1201–1208.
[81] Y. Li, H. Chen, J. Liu, H. Li, W. Yang, Pervaporation and vapor permeation dehydration of Fischer-Tropsch mixed-alcohols by LTA zeolite membranes, Sep. Purif. Technol. 57 (2007) 140–146.
[82] A. Huang, Q. Liu, N. Wang, X. Tong, B. Huang, M. Wang, J. Caro, Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports, J. Memb. Sci. 437 (2013) 57–64.
[83] Y. Cui, H. Kita, K.I. Okamoto, Zeolite T membrane: Preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability, J. Memb. Sci. 236 (2004) 17–27.
[84] Y. Hasegawa, T. Tanaka, K. Watanabe, B.-H. Jeong, K. Kusakabe, S. Morooka, Separation of CO2/CH4 and CO2/N2 systems using ion-exchanged FAU-type zeolite membranes with different Si/Al ratios, Korean J. Chem. Eng. 19 (2002) 309–313.
[85] S. Khajavi, J.C. Jansen, F. Kapteijn, Application of hydroxy sodalite films as novel water selective membranes, J. Memb. Sci. 326 (2009) 153–160.
[86] J. Kuhn, K. Yajima, T. Tomita, J. Gross, F. Kapteijn, Dehydration performance of a hydrophobic DD3R zeolite membrane, J. Memb. Sci. 321 (2008) 344–349.
[87] K. Tanaka, R. Yoshikawa, C. Ying, H. Kita, K.I. Okamoto, Application of zeolite membranes to esterification reactions, Catal. Today. 67 (2001) 121–125.
[88] Y. Hasegawa, C. Abe, M. Nishioka, K. Sato, T. Nagase, T. Hanaoka, Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions, J. Memb. Sci. 364 (2010) 318–324.
[89] Y. Zhang, Z. Xu, Q. Chen, Synthesis of small crystal polycrystalline mordenite membrane, J. Memb. Sci. 210 (2002) 361–368.
[90] H. Zhou, D. Korelskiy, T. Leppäjärvi, M. Grahn, J. Tanskanen, J. Hedlund, Ultrathin zeolite X membranes for pervaporation dehydration of ethanol, J. Memb. Sci. 399–400 (2012) 106–111.
[91] X. Lin, H. Kita, K. Okamoto, A novel method for the synthesis of high performance silicalite membranes, Chem. Commun. (2000) 1889–1890.
[92] S. Li, V.A. Tuan, R.D. Noble, J.L. Falconer, ZSM-11 membranes: characterization and pervaporation performance, AIChE J. 48 (2002) 269–278.
[93] W. Yuan, Y.S. Lin, W. Yang, Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers, J. Am. Chem. Soc. 126 (2004) 4776–4777.
[94] H. Kita, K. Fuchida, T. Horita, H. Asamura, K. Okamoto, Preparation of faujasite membranes and their permeation properties, Sep. Purif. Technol. 25 (2001) 261–268.
[95] X. Tan, N. Liu, B. Meng, S. Liu, Morphology control of the perovskite hollow fibre membranes for oxygen separation using different bore fluids, J. Memb. Sci. 378 (2011) 308–318.
[96] X. Zhang, B. Lin, Y. Ling, Y. Dong, D. Fang, G. Meng, X. Liu, Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant, J. Alloys Compd. 494 (2010) 366–371.
[97] X. Zhang, D. Fang, B. Lin, Y. Dong, G. Meng, X. Liu, Asymmetric porous cordierite hollow fiber membrane for microfiltration, J. Alloys Compd. 487 (2009) 631–638.
[98] S.M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method, Ceram. Int. 29 (2003) 875–881.
[99] L. Liu, X. Tan, S. Liu, Yttria stabilized zirconia hollow fiber membranes, J. Am. Ceram. Soc. 89 (2006) 1156–1159.
[100] H.P. Hsieh, Inorganic membranes for separation and reaction, Elsevier Science, Amsterdam, 1996.
[101] X. Zhang, J. Hu, Q. Chang, Y. Wang, J. Zhou, T. Zhao, Y. Jiang, X. Liu, Influences of internal coagulant composition on microstructure and properties of porous YSZ hollow fibre membranes for water treatment, Sep. Purif. Technol. (2015).
[102] Y.L.E. Fung, H. Wang, Nickel aluminate spinel reinforced ceramic hollow fibre membrane, J. Memb. Sci. 450 (2014) 418–424.
[103] B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes, J. Memb. Sci. 328 (2009) 134–140.
[104] H. Fang, J.F. Gao, H.T. Wang, C.S. Chen, Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process, J. Memb. Sci. 403–404 (2012) 41–46.
[105] A. Larbot, L. Gazagnes, S. Krajewski, M. Bukowska, K. Wojciech, Water desalination using ceramic membrane distillation, Desalination. 168 (2004) 367–372.
[106] S. Cerneaux, I. Struzyńska, W.M. Kujawski, M. Persin, A. Larbot, Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes, J. Memb. Sci. 337 (2009) 55–60.
[107] L. Gazagnes, S. Cerneaux, M. Persin, E. Prouzet, A. Larbot, Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes, Desalination. 217 (2007) 260–266.
[108] C. Ren, H. Fang, J. Gu, L. Winnubst, C. Chen, Preparation and characterization of hydrophobic alumina planar membranes for water desalination, J. Eur. Ceram. Soc. 35 (2015) 723–730.
[109] J.W. Zhang, H. Fang, J.W. Wang, L.Y. Hao, X. Xu, C.S. Chen, Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination, J. Memb. Sci. 450 (2014) 197–206.
[110] S.R. Krajewski, W. Kujawski, M. Bukowska, C. Picard, A. Larbot, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, J. Memb. Sci. 281 (2006) 253–259.
[111] J.W. Zhang, H. Fang, L.Y. Hao, X. Xu, C.S. Chen, Preparation of silicon nitride hollow fibre membrane for desalination, Mater. Lett. 68 (2012) 457–459.
[112] M. Khemakhem, S. Khemakhem, R. Ben Amar, Emulsion separation using hydrophobic grafted ceramic membranes by, Colloids Surfaces A Physicochem. Eng. Asp. 436 (2013) 402–407.
[113] J. Kujawa, S. Cerneaux, S. Koter, W. Kujawski, Highly efficient hydrophobic titania ceramic membranes for water desalination, ACS Appl. Mater. Interfaces. 6 (2014) 14223–14230.
[114] A. Garofalo, L. Donato, E. Drioli, A. Criscuolia, M.C. Carnevale, O. Alharbi, S.A. Aljlil, C. Algieri, Supported MFI zeolite membranes by cross flow filtration for water treatment, Sep. Purif. Technol. 137 (2014) 28–35.
[115] J.W. Wang, L. Li, J.W. Zhang, X. Xu, C.S. Chen, β-Sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane distillation, J. Eur. Ceram. Soc. 36 (2016) 59–65.
[116] J. Gu, C. Ren, X. Zong, C. Chen, L. Winnubst, Preparation of alumina membranes comprising a thin separation layer and a support with straight open pores for water desalination, Ceram. Int. 42 (2016) 12427–12434.
[117] J.W. Wang, L. Li, J.Q. Gu, M.Y. Yang, X. Xu, and C.S. Chen, H.T. Wang, S. Agathopoulos, Highly Stable Hydrophobic SiNCO Nanoparticle-Modified Silicon Nitride Membrane for Zero-Discharge Water Desalination, AIChE J. 63 (2017) 1272–1277.
[118] C.Y. Huang, C.C. Ko, L.H. Chen, C.T. Huang, K.L. Tung, Y.C. Liao, A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation, Sep. Purif. Technol. (2016).
[119] C.C. Ko, C.H. Chen, Y.R. Chen, Y.H. Wu, S.C. Lu, F.C. Hu, C.L. Li, K.L. Tung, Increasing the performance of vacuum membrane distillation using micro-structured hydrophobic aluminum hollow fiber membranes, Appl. Sci. 7 (2017) 357.
[120] Y. Hirota, M. Kayama, T. Kamiya, A. Ito, Hydrophobic Al2O3 membrane for sucrose concentration via vacuum membrane distillation system, J. Chem. Eng. Japan. 49 (2016) 915–919.
[121] J. Caro, M. Noack, Zeolite membranes - Recent developments and progress, Microporous Mesoporous Mater. 115 (2008) 215–233.
[122] Z.P. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaoti, M.A. Amat, E. Kokkoli, O. Terasaki, R.W. Thompson, M. Tsapatsis, D.G. Vlachos, Microstructural optimization of a zeolite membrane for organic vapor separation, Science 300 (2003) 456–460.
[123] T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami, K. Haraya, Separation of ethanol/water mixture by silicalite membrane on pervaporation, J. Memb. Sci. 95 (1994) 221–228.
[124] X. Dong, H. Wang, Z. Rui, Y.S. Lin, Tubular dual-layer MFI zeolite membrane reactor for hydrogen production via the WGS reaction: Experimental and modeling studies, Chem. Eng. J. 268 (2015) 219–229.
[125] L. Shan, J. Shao, Z. Wang, Y. Yan, Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation, J. Memb. Sci. 378 (2011) 319–329.
[126] S. Xia, Y. Peng, H. Lu, Z. Wang, The influence of nanoseeds on the pervaporation performance of MFI-type zeolite membranes on hollow fibers, Microporous Mesoporous Mater. 222 (2016) 128–137.
[127] Z. Hong, F. Sun, D. Chen, C. Zhang, X. Gu, N. Xu, Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane, Int. J. Hydrogen Energy. 38 (2013) 8409–8414.
[128] Y. Zhang, Q. Sun, X. Gu, Pure H2 production through hollow fiber hydrogen-selective MFI zeolite membranes using steam as sweep gas, AIChE J. 61 (2015) 3459–3469.
[129] J.G. Wijmans, P. Hao, Influence of the porous support on diffusion in composite membranes, J. Memb. Sci. 494 (2015) 78–85.
[130] H.K. Lonsdale, R.L. Riley, C.R. Lyons, D.P. Carosella, Transport in Composite Reverse Osmosis Membranes, in: M. Bier (Ed.), Membr. Process. Ind. Biomed., Springer US, Boston, MA, 1971: pp. 101–122.
[131] L. Zhu, W. Jia, M. Kattula, K. Ponnuru, E.P. Furlani, H. Lin, Effect of porous supports on the permeance of thin film composite membranes: Part I. Track-etched polycarbonate supports, J. Memb. Sci. 514 (2016) 684–695.
[132] M. Kanezashi, J. O’Brien, Y.S. Lin, Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer, Microporous Mesoporous Mater. 103 (2007) 302–308.
[133] V. Sebastian, R. Mallada, J. Coronas, A. Julbe, R.A. Terpstra, R.W.J. Dirrix, Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite-ceramic membranes for pervaporation application, J. Memb. Sci. 355 (2010) 28–35.
[134] G. Cruciani, Zeolites upon heating: Factors governing their thermal stability and structural changes, J. Phys. Chem. Solids. 67 (2006) 1973–1994.
[135] P.G. Krokidas, V. Nikolakis, V.N. Burganos, Heating and sorption effects on silicalite-1 unit cell size and geometry, Microporous Mesoporous Mater. 155 (2012) 65–70.
[136] S.R.G. Balestra, S. Hamad, A.R. Ruiz-Salvador, V. Dom??nguez-Garc??a, P.J. Merkling, D. Dubbeldam, S. Calero, Understanding Nanopore Window Distortions in the Reversible Molecular Valve Zeolite RHO, Chem. Mater. 27 (2015) 5657–5667.
[137] M. Noack, M. Schneider, A. Dittmar, G. Georgi, J. Caro, The change of the unit cell dimension of different zeolite types by heating and its influence on supported membrane layers, Microporous Mesoporous Mater. 117 (2009) 10–21.
[138] M. Pan, Y.S. Lin, Template-free secondary growth synthesis of MFI type zeolite membranes, Microporous Mesoporous Mater. 43 (2001) 319–327.
[139] M. Kanezashi, J. O’Brien, Y.S. Lin, Template-free synthesis of MFI- type zeolite membranes: permeation characteristics and thermal sta- bility improvement of membrane structure. J, J. Memb. Sci. 286 (2006) 213–222.
[140] G. Xomeritakis, A. Gouzinis, S. Nair, T. Okubo, M. He, R.M. Overney, M. Tsapatsis, Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth, Chem. Eng. Sci. 54 (1999) 3521–3531.
[141] L.J.P. Van Den Broeke, W.J.W. Bakker, F. Kapteijn, J.A. Moulijn, Binary permeation through a silicalite-1 membrane, AIChE J. 45 (1999) 976–985.
[142] W.J.W. Bakker, L.J.P. Van Den Broeke, F. Kapteijn, J.A. Moulijn, Temperature dependence of one-component permeation through a silicalite-1 membrane, AIChE J. 43 (1997) 2203–2214.
[143] X. Zhu, H. Wang, Y.S. Lin, Effect of the membrane quality on gas permeation and chemical vapor deposition modification of MFI-type zeolite membranes, Ind. Eng. Chem. Res. 49 (2010) 10026–10033.
[144] M. Kanezashi, Y.S. Lin, Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures, J. Phys. Chem. C. 113 (2009) 3767–3774.
[145] M. Kanezashi, J. O’Brien-Abraham, Y.S. Lin, K. Suzuki, Gas permeation through DDR-type zeolite membranes at high temperatures, AIChE J. 54 (2008) 1478–1486.
[146] X. Lin, H. Kita, K. Okamoto, Silicalite Membrane Preparation, Characterization, and Separation Performance, Ind. Eng. Chem. Res. 40 (2001) 4069–4078.
[147] D. da S. Biron, V. dos Santos, M. Zeni, Chpater 3 Ceramic membranes preparation, in: Ceram. Membr. Appl. Sep. Process., Springer, Cham, 2017: pp. 31–48.
[148] J.C.S. Wu, L.C. Cheng, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor, J. Memb. Sci. 167 (2000) 253–261.
[149] K.K. A.J. Burggraaf, Chapter 2 Synthesis of inorganic membranes, in: Inorg. Membr. Synth. Charact. Appl., Van Nostrand Reinhold, New York, 1991: pp. 10–63.
[150] A.L. L. Cot, Ch. Guizard, Novel ceramic material for liquid separation process: present and prospective applications in microfiltration and ultrafiltration, Ind. Ceram. 8 (1988) 143.
[151] C.C. Wei, K. Li, Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells, Ind. Eng. Chem. Res. 47 (2008) 1506–1512.
[152] J. Weissbart, R. Ruka, A Solid Electrolyte Fuel Cell, J. Electrochem. Soc. 109 (1962) 723-726.
[153] and P.D.P. S. Dou, C. R. Masson, Mechanism of oxygen permeation through lime-stabilized Zirconia, J. Electrochem. Soc. 132 (1985) 1843–1849.
[154] and J.S. M. Croset, P. Schnell, G. Velasco, Study of calcia-stabilized zirconia thin-film sensors, J. Vac. Sci. Technol. 14 (1977) 777–781.
[155] Y. Liu, O.Y. Chen, C.C. Wei, K. Li, Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes, Desalination. 199 (2006) 360–362.
[156] W. Yin, B. Meng, X. Meng, X. Tan, Highly asymmetric yttria stabilized zirconia hollow fibre membranes, J. Alloys Compd. 476 (2009) 566–570.
[157] M. Lee, Z. Wu, R. Wang, K. Li, Micro-structured alumina hollow fibre membranes – Potential applications in wastewater treatment, J. Memb. Sci. 461 (2014) 39–48.
[158] X. Zhang, S. Suo, Y. Jiang, Q. Chang, G. Ji, X. Liu, Microstructure evolution and properties of YSZ hollow fiber microfiltration membranes prepared at different suspension solid content for water treatment, Desalin. Water Treat. 57 (2016) 21273–21285.
[159] J. Kim, Sol-gel synthesis and characterization of yttria stabilized zirconia membranes, J. Memb. Sci. 139 (1998) 75–83.
[160] J.H. Dong, K. Wegner, Y.S. Lin, Synthesis of submicron polycrystalline MFI zeolite films on porous ceramic supports, J. Memb. Sci. 148 (1998) 233–241.
[161] J. Kim, Y.S. Lin, Synthesis and Characterization of Suspension-Derived, Porous Ion-Conducting Ceramic Membranes, J. Am. Soc. 46 (1999) 2641–2646.
[162] H. Wang, Y.S. Lin, Effects of water vapor on gas permeation and separation properties of MFI zeolite membranes at high temperatures, AIChE J. 58 (2012) 153–162.
[163] Membralox® Ceramic Membrane Products, Pall Corp. (n.d.). https://shop.pall.com/us/en/food-beverage/dairy/whole-milk-concentration/mem-braloxceramic-membrane-products-zidgri78lwl.
[164] H. Wang, X. Dong, Y.S. Lin, Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation, J. Memb. Sci. 450 (2014) 425–432.
[165] H. Wang, Y.S. Lin, Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance, J. Memb. Sci. 396 (2012) 128–137.
[166] B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environ. Prog. 22 (2003) 46–56.
[167] A. Rastegar, M. Samayoa, M. House, H. Kurtuldu, S.-K. Eah, L. Morse, J. Harris-Jones, Particle control challenges in process chemicals and ultra-pure water for sub-10nm technology nodes, in: 2014: p. 90480P–9048–14.
[168] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: A review of research trends over the past decade, J. Water Process Eng. 19 (2017) 164–171.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70065-
dc.description.abstract近十幾年來,工業技術的躍進與經濟的蓬勃發展,帶動高規格或極端薄膜分離程序之需求,如超純(無水)溶劑、超純水、重金屬/強酸鹼廢水/溶劑、高溫有害氣體等生產或處理程序。而此需求,間接促進了無機薄膜之研究發展。無機薄膜(如金屬、陶瓷薄膜等)因材料本身具有高化學、機械與熱穩定性,在極端分離環境下,相較於高分子薄膜能展現更好之分離效能與穩定性。目前廣泛應用於化學化工、環工、能源、食品與醫藥等領域之所需分離程序上。
在無機薄膜之基礎研究發展漸趨成熟後,規模化(工業化)製造與系統之技術開發將為下一個發展進程。透過紡製方法所製備之中空纖維型態薄膜,具有量產容易與高填充密度(單位設備體積之有效處理面積 > 1000 m2/m3)之優點,該技術發展水平被視為薄膜技術規模化程度之指標。為此,本研究致力於開發無機中空纖維薄膜之規模化製造技術、探討薄膜結構設計和孔洞控制之方法,並發展可能之應用,為本土無機薄膜製造與應用技術扎根。
第一章節中,首先回顧陶瓷薄膜之發展與傳統製備技術,幫助了解整體研究背景與展望未來。接著介紹陶瓷中空纖維膜之紡製技術,並簡述其成膜機制,為設備建置、結構設計與孔洞控制等研究提供參考資料。最後,介紹陶瓷中空纖維膜於後續應用端(薄膜蒸餾、薄膜接觸器碳捕捉、中空纖維沸石薄膜之氫氣分離與滲透蒸發之應用)之運作原理,以及沸石薄膜之文獻回顧。
第二章中主要探討陶瓷中空纖維膜的紡製參數對其微結構、孔徑之影響,進而對後續薄膜接觸器應用或做為基材使用之中空纖維膜,進行微結構與孔徑設計。透過此研究,成功開發出單一孔徑分佈(~ 0.2 μm)之陶瓷中空纖維膜,為後續使用提供適當之表面孔徑,提升薄膜品質與應用效能。所製備之陶瓷中空纖維膜在疏水化後,於薄膜蒸餾(MD)與薄膜接觸器碳捕捉應用(MC)上,皆展現目前最優異之處理效能(Vacuum MD: 60 L m-2 h-1 for 3.5 wt% salt in water at 70℃; MC: 3.0 mmol m-2 s-1 for 10 vol% CO2 in N2)。本章節最後,提出創新性中孔洞氣凝膠塗佈縮孔改質技術,有效將巨孔的陶瓷膜(> 0.2 μm)縮小孔洞至中孔洞範圍(2~50 nm),並利用氣凝膠的高孔隙度特性(> 90 %)提升薄膜接觸器薄膜表面之接觸面積,大幅提升陶瓷薄膜於薄膜接觸器碳捕捉應用上之效能三倍以上。
第三章中,透過成長MFI型沸石薄膜於陶瓷中空纖維膜上,成功製備成中空纖維沸石薄膜(孔徑~ 5.5Å),進一步將本研究應用廣度推向微孔範圍(< 2 nm)。本章節中將深入探討,陶瓷中空纖維膜之表面曲度對所支撐的沸石薄膜品質之影響。研究發現,所使用的基材之曲度越大(即中空纖維膜外徑越小),可能使得所支撐之沸石薄膜在模板基(template or called “structure directing agents”, SDA)移除過程中,產生更多的晶間缺陷。此外研究發現,所合成之沸石薄膜,其小分子氣體通量(如He、H2)呈現隨溫度上升而上升之正相關趨勢,與理論模型推論不符(遵循Knudsen diffusion mechanism負相關)。透過理論模型與實驗設計,成功解釋此正相關趨勢,乃因中空纖維基材上所乘載之沸石薄膜,在升溫過程中受到基材膨脹之徑向熱應力擠壓,產生晶間缺陷擴大之情形所致。此研究結果說明,發展複合型無機中空纖維薄膜,基材表面曲度效應對薄膜品質之影響應加以考量。
第四章中,研究發現氧化鋁基材之鋁離子在沸石薄膜合成與熱處理過程中,會有擴散至沸石結構,降低其結構Si/Al比導致孔洞疏水性弱化之情形,將不利後續滲透蒸發脫醇(dealcoholization by pervaporation for 5 wt% ethanol in water at 60℃)之應用。本研究提出以沈浸塗佈法(dip-coating)於氧化鋁中空纖維膜上成長多孔釔安定氧化鋯(yttria-stabilized zirconia, YSZ)之薄膜中間層,成功製備釔安定氧化鋯中空纖維薄膜(孔徑~ 80 nm),並證實此YSZ中間層能有效阻擋鋁離子之擴散,幫助製備出純矽MFI型沸石中空纖維膜(silicalite-1 hollow fiber membranes),大幅提升沸石薄膜之孔洞疏水性,改善滲透蒸發脫醇效能。
第五章總結前三章節之研究成果,並根據研究成果與經驗展望未來,以及針對後進可能遭遇之困難給予可能之解決辦法。最後,本研究成功建立的無機中空纖維膜紡製系統與奠定相關研究基礎,將為後續本土無機薄膜研究發展提供一大助力。
zh_TW
dc.description.abstractCeramic membranes have attracted considerable attention during the last decade due to their superior mechanical strength, chemical durability and thermal stability. Their great natural properties have made them an alternative to polymeric counterparts in various extreme separation applications, such as the field of environment, energy, chemical, food engineering, pharmaceutical industries, etc. To step into a chapter of industrialization of ceramic membranes, the membrane configurations should be facile to process and scale up. Hence, hollow fiber membrane configurations were born in response, which had a great advantage in achieving attractive membrane packing density (surface-to-volume ratio >1000 m2/m3).
First, we focused on the development of the spinning technique for making ceramic hollow fiber membranes. The effects of slurry composition, spinning parameters and sintering temperature on the membrane properties, such as microstructures, pore sizes, porosity and permeability, were investigated. The prepared alumina hollow fiber membranes were demonstrated with competitive performances in membrane contactor applications for both CO2 capture and distillation.
Next, for high temperature separation where polymer membranes cannot survive, ceramic membranes have undoubted predominance due to their superior thermal stability. As a result, we developed MFI type zeolite membranes supported by macroporous alumina hollow fiber membranes, attempting to separate H2 from the products (normally H2/CO2) of water-gas-shift (WGS) reaction at 350~550℃. It was found that the alumina hollow fiber supported MFI type zeolite membranes experienced a thermal mismatch between the support and the zeolite layer, which were demonstrated to become serious as the substrate curvature increased. Gas permeation experiments combining with a theoretical model were conducted to study this thermal mismatch problem.
Finally, highly permeable alumina supported yttria-stabilized zirconia (YSZ) hollow fiber membrane was successfully prepared by a dip-coating method, which was used to support silicalite-1 membrane for ethanol/water pervaporation (dealcoholization from 5 wt% ethanol in water) for the first time. SED/EDX analysis confirmed the YSZ intermediate layer could be a barrier to restrain the aluminum, its appearance lowering the hydrophobicity of zeolite pores, from diffusion into the zeolite structure during synthesis and calcination. As a result, MFI type zeolite hollow fiber membrane with high Si/Al ratio (∞, silicalite-1) could be obtained when supported by the YSZ coated alumina hollow fiber substrate, exhibiting a promising ethanol/water separation performance in pervaporation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:41:36Z (GMT). No. of bitstreams: 1
ntu-107-D01524009-1.pdf: 12352328 bytes, checksum: 0b15d0912ddaf5aee3b9b32e07b08cad (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsACKNOWLEDGEMENT II
中文摘要 III
ABSTRACT VI
TABLE OF CONTENTS IX
LIST OF FIGURES XV
LIST OF TABLES XXVIII
CHPTER 1 GENERAL INTRODUCTION 1
1.1 INORGANIC MEMBRANES 1
1.1.1 Slip casting 3
1.1.2 Tape casting 4
1.1.3 Pressing 5
1.1.4 Extrusion 6
1.1.5 Sol-gel process 7
1.1.6 Dip-coating 10
1.2 PREPARATION OF CERAMIC HOLLOW FIBER MEMBRANES 11
1.2.1 Preparation of the slurry 13
1.2.2 Spinning for making membrane precursors 17
1.2.3 Sintering 21
1.3 MEMBRANE CONTACTOR APPLICATIONS 27
1.3.1 Membrane contactors (MCs) 27
1.3.2 Membrane contactors for CO2 capture 28
1.3.3 Membrane contactors for membrane distillation (MD) 31
1.4 ZEOLITE MEMBRANES 34
1.4.1 Zeolite membranes: past, state-of-the-art and utilization 34
1.4.2 Membrane supports: categories and influences 37
1.4.3 Zeolite membrane synthesis 39
1.4.4 Template removal and post-modification 40
1.4.5 Gas/vapor separation and pervaporation with zeolite membranes 41
CHPTER 2 MICRO-STRUCTURAL DESIGN OF ALUMINA HOLLOW FIBER MEMBRANES (AHFMS): GIVING A PROMISING MICROSTRUCTURE FOR MEMBRANE CONTACTOR APPLICATIONS 46
2.1 ABSTRACT 46
2.2 INTRODUCTION 46
2.3 EXPERIMENTAL 49
2.3.1 Preparation of ceramic hollow fiber membranes 49
2.3.2 Characterization 52
2.3.1 Gas permeation/pure water flux measurement 53
2.4 RESULTS AND DISCUSSION 56
2.4.1 Effect of the particle size distribution in the slurry on membrane properties 56
2.4.2 Effect of various spinning parameters on the morphology of the membranes 60
2.4.3 Calcination (Sintering) 76
2.5 PORE CONTROL BY SILICA AEROGEL COATING 78
2.5.1 Applications of the macroporous alumina hollow fiber membranes 83
2.6 CONCLUSION 96
SUPPLEMENT 97
CHPTER 3 EFFECT OF SUBSTRATE CURVATURE ON MICROSTRUCTURE AND GAS PERMEABILITY OF HOLLOW FIBER MFI ZEOLITE MEMBRANES 102
3.1 ABSTRACT 102
3.2 INTRODUCTION 103
3.3 EXPERIMENTAL 107
3.3.1 Preparation of Al2O3 hollow fiber substrates 107
3.3.2 Synthesis of Silicalite-1 membranes on Al2O3 hollow fiber substrates 108
3.3.3 Membrane characterization and gas permeation experiments 110
3.4 RESULTS AND DISCUSSION 111
3.4.1 Characteristics of hollow fiber supported zeolite membranes 111
3.4.2 Gas permeation of hollow fiber supported zeolite membranes 117
3.4.3 Analysis of Temperature Dependence of Gas Permeance 123
3.5 CONCLUSION 130
ACKNOWLEDGEMENT 131
CHPTER 4 ALUMINA SUPPORTED YSZ HOLLOW FIBER MEMBRANES 132
4.1 ABSTRACT 132
4.2 INTRODUCTION 133
4.3 EXPERIMENTAL 138
4.3.1 Preparation of YSZ dip-coating suspension 138
4.3.2 Preparation of alumina supported YSZ hollow fiber membranes 139
4.3.3 Characterization of the AHFS supported YSZ membranes 139
4.3.4 Gas permeation measurement/Filtration test 140
4.3.5 Pervaporation (PV) experiment 142
4.4 RESULTS AND DISCUSSION 144
4.4.1 Characterization of alumina supported YSZ hollow fiber membranes 144
4.4.2 Effect of the preparation parameters on the quality of the alumina supported YSZ membranes 150
4.4.3 Sintering temperature for the coated YSZ layer 153
4.4.4 Pore size and surface properties of the prepared YSZ hollow fibers 154
4.4.5 A promising support for silicalite-1/ZSM-5 membranes 161
4.5 CONCLUSION 167
CHPTER 5 SUMMARY AND PERSPECTIVE 168
5.1 SUMMARY 168
5.2 PERSPECTIVE 170
REFERENCES 174
dc.language.isoen
dc.subject沸石薄膜zh_TW
dc.subject薄膜蒸餾zh_TW
dc.subject滲透蒸發zh_TW
dc.subject二氧化碳zh_TW
dc.subject中空纖維zh_TW
dc.subject無機薄膜zh_TW
dc.subjectZeolite membranesen
dc.subjectHollow fiberen
dc.subjectCO2en
dc.subjectPervaporationen
dc.subjectMembrane distillationen
dc.subjectInorganic membranesen
dc.title無機中空纖維膜之結構、孔洞控制與規模化技術開發及其於碳捕捉與滲透蒸發之應用zh_TW
dc.titleMorphology and Pore Control of Inorganic Hollow Fiber Membranes Through a Scalable Process for Carbon Capture and Pervaporationen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee賴君義(Juin-Yih Lai),吳紀聖(Chi-Sheng Wu),王大銘(Da-Ming Wang),孫一明(Yi-Ming Sun),呂幸江(Shing-Jiang Lue)
dc.subject.keyword無機薄膜,中空纖維,二氧化碳,滲透蒸發,薄膜蒸餾,沸石薄膜,zh_TW
dc.subject.keywordInorganic membranes,Hollow fiber,CO2,Pervaporation,Membrane distillation,Zeolite membranes,en
dc.relation.page196
dc.identifier.doi10.6342/NTU201800169
dc.rights.note有償授權
dc.date.accepted2018-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
12.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved