請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70052完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂紹俊(Shao-Chun Lu) | |
| dc.contributor.author | Yuan-Chun Chou | en |
| dc.contributor.author | 周元浚 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:40:54Z | - |
| dc.date.available | 2023-02-22 | |
| dc.date.copyright | 2018-02-22 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-08 | |
| dc.identifier.citation | Anstee, Q.M., Targher, G., and Day, C.P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10, 330-344.
Bancells, C., Canals, F., Benitez, S., Colome, N., Julve, J., Ordonez-Llanos, J., and Sanchez-Quesada, J.L. (2010). Proteomic analysis of electronegative low-density lipoprotein. J Lipid Res 51, 3508-3515. Benitez, S., Bancells, C., Ordonez-Llanos, J., and Sanchez-Quesada, J.L. (2007). Pro-inflammatory action of LDL(-) on mononuclear cells is counteracted by increased IL10 production. Biochim Biophys Acta 1771, 613-622. Bieghs, V., Walenbergh, S.M., Hendrikx, T., van Gorp, P.J., Verheyen, F., Olde Damink, S.W., Masclee, A.A., Koek, G.H., Hofker, M.H., Binder, C.J., et al. (2013). Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation. Liver Int 33, 1056-1061. Browning, J.D., and Horton, J.D. (2004). Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147-152. Buono, C., Pang, H., Uchida, Y., Libby, P., Sharpe, A.H., and Lichtman, A.H. (2004). B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 109, 2009-2015. Chan, H.C., Ke, L.Y., Chu, C.S., Lee, A.S., Shen, M.Y., Cruz, M.A., Hsu, J.F., Cheng, K.H., Chan, H.C., Lu, J., et al. (2013). Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 122, 3632-3641. Chanput, W., Mes, J.J., Savelkoul, H.F., and Wichers, H.J. (2013). Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food Funct 4, 266-276. Chatzigeorgiou, A., Chung, K.J., Garcia-Martin, R., Alexaki, V.I., Klotzsche-von Ameln, A., Phieler, J., Sprott, D., Kanczkowski, W., Tzanavari, T., Bdeir, M., et al. (2014). Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology 60, 1196-1210. Chavez-Sanchez, L., Chavez-Rueda, K., Legorreta-Haquet, M.V., Zenteno, E., Ledesma-Soto, Y., Montoya-Diaz, E., Tesoro-Cruz, E., Madrid-Miller, A., and Blanco-Favela, F. (2010). The activation of CD14, TLR4, and TLR2 by mmLDL induces IL-1beta, IL-6, and IL-10 secretion in human monocytes and macrophages. Lipids Health Dis 9, 117. Chavez-Sanchez, L., Garza-Reyes, M.G., Espinosa-Luna, J.E., Chavez-Rueda, K., Legorreta-Haquet, M.V., and Blanco-Favela, F. (2014). The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans. Hum Immunol 75, 322-329. Chen, C., Gault, A., Shen, L., and Nabavi, N. (1994). Molecular cloning and expression of early T cell costimulatory molecule-1 and its characterization as B7-2 molecule. J Immunol 152, 4929-4936. Cho, K.Y., Miyoshi, H., Kuroda, S., Yasuda, H., Kamiyama, K., Nakagawara, J., Takigami, M., Kondo, T., and Atsumi, T. (2013). The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 22, 910-918. Cholankeril, G., Perumpail, R.B., Pham, E.A., Ahmed, A., and Harrison, S.A. (2016). Nonalcoholic Fatty Liver Disease: Epidemiology, Natural History, and Diagnostic Challenges. Hepatology 64, 954. Chu, C.S., Wang, Y.C., Lu, L.S., Walton, B., Yilmaz, H.R., Huang, R.Y., Sawamura, T., Dixon, R.A., Lai, W.T., Chen, C.H., et al. (2013). Electronegative low-density lipoprotein increases C-reactive protein expression in vascular endothelial cells through the LOX-1 receptor. PLoS One 8, e70533. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S., and Obin, M.S. (2005). Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46, 2347-2355. Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two 'hits'? Gastroenterology 114, 842-845. de Gaetano, M., Crean, D., Barry, M., and Belton, O. (2016). M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Front Immunol 7, 275. Duluc, D., Delneste, Y., Tan, F., Moles, M.P., Grimaud, L., Lenoir, J., Preisser, L., Anegon, I., Catala, L., Ifrah, N., et al. (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110, 4319-4330. Enjoji, M., and Nakamuta, M. (2010). Is the control of dietary cholesterol intake sufficiently effective to ameliorate nonalcoholic fatty liver disease? World J Gastroenterol 16, 800-803. Esterbauer, H., Schaur, R.J., and Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11, 81-128. Estruch, M., Sanchez-Quesada, J.L., Ordonez Llanos, J., and Benitez, S. (2013). Electronegative LDL: a circulating modified LDL with a role in inflammation. Mediators Inflamm 2013, 181324. Fabbrini, E., Mohammed, B.S., Magkos, F., Korenblat, K.M., Patterson, B.W., and Klein, S. (2008). Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424-431. Farrell, G.C., and Larter, C.Z. (2006). Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43, S99-S112. Farrell, G.C., Wong, V.W., and Chitturi, S. (2013). NAFLD in Asia--as common and important as in the West. Nat Rev Gastroenterol Hepatol 10, 307-318. Freeman, G.J., Gribben, J.G., Boussiotis, V.A., Ng, J.W., Restivo, V.A., Jr., Lombard, L.A., Gray, G.S., and Nadler, L.M. (1993). Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262, 909-911. Gabele, E., Dostert, K., Hofmann, C., Wiest, R., Scholmerich, J., Hellerbrand, C., and Obermeier, F. (2011). DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol 55, 1391-1399. Gazi, U., and Martinez-Pomares, L. (2009). Influence of the mannose receptor in host immune responses. Immunobiology 214, 554-561. Goldstein, J.L., and Brown, M.S. (1977). The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46, 897-930. Guo, L.L., Chen, Y.J., Wang, T., An, J., Wang, C.N., Shen, Y.C., Yang, T., Zhao, L., Zuo, Q.N., Zhang, X.H., et al. (2012). Ox-LDL-induced TGF-beta1 production in human alveolar epithelial cells: involvement of the Ras/ERK/PLTP pathway. J Cell Physiol 227, 3185-3191. Hamilton, T.A., Zhao, C., Pavicic, P.G., Jr., and Datta, S. (2014). Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol 5, 554. Han, J., Hajjar, D.P., Febbraio, M., and Nicholson, A.C. (1997). Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem 272, 21654-21659. Han, J., Nicholson, A.C., Zhou, X., Feng, J., Gotto, A.M., Jr., and Hajjar, D.P. (2001). Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. J Biol Chem 276, 16567-16572. Harrison, S.A., Torgerson, S., and Hayashi, P.H. (2003). The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am J Gastroenterol 98, 2042-2047. Herrington, W., Lacey, B., Sherliker, P., Armitage, J., and Lewington, S. (2016). Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res 118, 535-546. Hotamisligil, G.S., Shargill, N.S., and Spiegelman, B.M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91. Hsu, C.S., and Kao, J.H. (2012). Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. J Formos Med Assoc 111, 527-535. Hubscher, S.G. (2006). Histological assessment of non-alcoholic fatty liver disease. Histopathology 49, 450-465. Ioannou, G.N., Morrow, O.B., Connole, M.L., and Lee, S.P. (2009). Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 50, 175-184. Ivanova, E.A., Bobryshev, Y.V., and Orekhov, A.N. (2015). LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag 11, 525-532. Ke, L.Y., Engler, D.A., Lu, J., Matsunami, R.K., Chan, H.C., Wang, G.J., Yang, C.Y., Chang, J.G., and Chen, C.H. (2011). Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. Pure Appl Chem 83. Kim, D., Kim, W.R., Kim, H.J., and Therneau, T.M. (2013). Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57, 1357-1365. Labonte, A.C., Tosello-Trampont, A.C., and Hahn, Y.S. (2014). The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells 37, 275-285. Lai, Y.S., Yang, T.C., Chang, P.Y., Chang, S.F., Ho, S.L., Chen, H.L., and Lu, S.C. (2016). Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. J Nutr Biochem 30, 44-52. Lara-Guzman, O.J., Gil-Izquierdo, A., Medina, S., Osorio, E., Alvarez-Quintero, R., Zuluaga, N., Oger, C., Galano, J.M., Durand, T., and Munoz-Durango, K. (2017). Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol 15, 1-11. Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., Straif, K., and International Agency for Research on Cancer Handbook Working, G. (2016). Body Fatness and Cancer--Viewpoint of the IARC Working Group. N Engl J Med 375, 794-798. Lee, S.J., Evers, S., Roeder, D., Parlow, A.F., Risteli, J., Risteli, L., Lee, Y.C., Feizi, T., Langen, H., and Nussenzweig, M.C. (2002). Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295, 1898-1901. Levene, A.P., and Goldin, R.D. (2012). The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 61, 141-152. Llorente-Cortes, V., Otero-Vinas, M., Sanchez, S., Rodriguez, C., and Badimon, L. (2002). Low-density lipoprotein upregulates low-density lipoprotein receptor-related protein expression in vascular smooth muscle cells: possible involvement of sterol regulatory element binding protein-2-dependent mechanism. Circulation 106, 3104-3110. Lu, J., Yang, J.H., Burns, A.R., Chen, H.H., Tang, D., Walterscheid, J.P., Suzuki, S., Yang, C.Y., Sawamura, T., and Chen, C.H. (2009). Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 104, 619-627. Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117, 175-184. Lusis, A.J. (2000). Atherosclerosis. Nature 407, 233-241. Madamanchi, N.R., Vendrov, A., and Runge, M.S. (2005). Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25, 29-38. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-555. Marodi, L., Korchak, H.M., and Johnston, R.B., Jr. (1991). Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol 146, 2783-2789. Martinez, F.O., and Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6, 13. Mattaliano, M.D., Wooters, J., Shih, H.H., and Paulsen, J.E. (2010). ROCK2 associates with lectin-like oxidized LDL receptor-1 and mediates oxidized LDL-induced IL-8 production. Am J Physiol Cell Physiol 298, C1180-1187. Mello, A.P., da Silva, I.T., Abdalla, D.S., and Damasceno, N.R. (2011). Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215, 257-265. Michael, D.R., Salter, R.C., and Ramji, D.P. (2012). TGF-beta inhibits the uptake of modified low density lipoprotein by human macrophages through a Smad-dependent pathway: a dominant role for Smad-2. Biochim Biophys Acta 1822, 1608-1616. Miller, Y.I., Viriyakosol, S., Worrall, D.S., Boullier, A., Butler, S., and Witztum, J.L. (2005). Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol 25, 1213-1219. Mittar, D., Paramban, R., and McIntyre, C. (2011). Flow Cytometry and High-Content Imaging to Identify Markers of Monocyte-Macrophage Differentiation. BD Biosciences, pp. 1–20 (Application Note). Miura, K., Yang, L., van Rooijen, N., Ohnishi, H., and Seki, E. (2012). Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302, G1310-1321. Musso, G., Cassader, M., and Gambino, R. (2011).Cholesterol-lowering therapy for the treatment of nonalcoholic fatty liver disease: an update. Curr Opin Lipidol 22, 489-496. Ogawa, T., Fujii, H., Yoshizato, K., and Kawada, N. (2010). A human-type nonalcoholic steatohepatitis model with advanced fibrosis in rabbits. Am J Pathol 177, 153-165. Ogden, C.L., Yanovski, S.Z., Carroll, M.D., and Flegal, K.M. (2007). The epidemiology of obesity. Gastroenterology 132, 2087-2102. Olefsky, J.M., and Glass, C.K. (2010). Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72, 219-246. Parasassi, T., Bittolo-Bon, G., Brunelli, R., Cazzolato, G., Krasnowska, E.K., Mei, G., Sevanian, A., and Ursini, F. (2001). Loss of apoB-100 secondary structure and conformation in hydroperoxide rich, electronegative LDL(-). Free Radic Biol Med 31, 82-89. Parasassi, T., De Spirito, M., Mei, G., Brunelli, R., Greco, G., Lenzi, L., Maulucci, G., Nicolai, E., Papi, M., Arcovito, G., et al. (2008). Low density lipoprotein misfolding and amyloidogenesis. FASEB J 22, 2350-2356. Patsch, J.R., Sailer, S., Kostner, G., Sandhofer, F., Holasek, A., and Braunsteiner, H. (1974). Separation of the main lipoprotein density classes from human plasma by rate-zonal ultracentrifugation. J Lipid Res 15, 356-366. Pedrosa, A.M., Faine, L.A., Grosso, D.M., de Las Heras, B., Bosca, L., and Abdalla, D.S. (2010). Electronegative LDL induction of apoptosis in macrophages: involvement of Nrf2. Biochim Biophys Acta 1801, 430-437. Perdiguero, E., Sousa-Victor, P., Ruiz-Bonilla, V., Jardi, M., Caelles, C., Serrano, A.L., and Munoz-Canoves, P. (2011). p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol 195, 307-322. Qureshi, K., and Abrams, G.A. (2007). Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 13, 3540-3553. Roszer, T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm 2015, 816460. Saegusa, K., Ishimaru, N., Yanagi, K., Haneji, N., Nishino, M., Azuma, M., Saito, I., and Hayashi, Y. (2000). Treatment with anti-CD86 costimulatory molecule prevents the autoimmune lesions in murine Sjogren's syndrome (SS) through up-regulated Th2 response. Clin Exp Immunol 119, 354-360. Sanchez-Quesada, J.L., Camacho, M., Anton, R., Benitez, S., Vila, L., and Ordonez-Llanos, J. (2003). Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells. Atherosclerosis 166, 261-270. Schwabe, R.F., and Brenner, D.A. (2006). Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290, G583-589. Seo, J.W., Yang, E.J., Yoo, K.H., and Choi, I.H. (2015). Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein. Mediators Inflamm 2015, 235797. Shaikh, S., Brittenden, J., Lahiri, R., Brown, P.A., Thies, F., and Wilson, H.M. (2012). Macrophage subtypes in symptomatic carotid artery and femoral artery plaques. Eur J Vasc Endovasc Surg 44, 491-497. Stahl, P.D., and Ezekowitz, R.A. (1998). The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10, 50-55. Stoger, J.L., Gijbels, M.J., van der Velden, S., Manca, M., van der Loos, C.M., Biessen, E.A., Daemen, M.J., Lutgens, E., and de Winther, M.P. (2012). Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225, 461-468. Strauss, R.S., Barlow, S.E., and Dietz, W.H. (2000). Prevalence of abnormal serum aminotransferase values in overweight and obese adolescents. J Pediatr 136, 727-733. Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh, W.G., Yeh, M.M., Kowdley, K.V., O'Brien, K.D., et al. (2011). Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 52, 1626-1635. Svensson, P.A., Englund, M.C., Snackestrand, M.S., Hagg, D.A., Ohlsson, B.G., Stemme, V., Mattsson-Hulten, L., Thelle, D.S., Fagerberg, B., Wiklund, O., et al. (2005). Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques. BMC Cardiovasc Disord 5, 25. Tan, H.Y., Wang, N., Li, S., Hong, M., Wang, X., and Feng, Y. (2016). The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid Med Cell Longev 2016, 2795090. Tang, D., Lu, J., Walterscheid, J.P., Chen, H.H., Engler, D.A., Sawamura, T., Chang, P.Y., Safi, H.J., Yang, C.Y., and Chen, C.H. (2008). Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res 49, 33-47. Tannapfel, A., Denk, H., Dienes, H.P., Langner, C., Schirmacher, P., Trauner, M., and Flott-Rahmel, B. (2011). Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Virchows Arch 458, 511-523. Tateya, S., Kim, F., and Tamori, Y. (2013). Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne) 4, 93. Tosello-Trampont, A.C., Landes, S.G., Nguyen, V., Novobrantseva, T.I., and Hahn, Y.S. (2012). Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem 287, 40161-40172. Van Rooyen, D.M., Gan, L.T., Yeh, M.M., Haigh, W.G., Larter, C.Z., Ioannou, G., Teoh, N.C., and Farrell, G.C. (2013). Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 59, 144-152. van Tits, L.J., Stienstra, R., van Lent, P.L., Netea, M.G., Joosten, L.A., and Stalenhoef, A.F. (2011). Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis 214, 345-349. Wan, J., Benkdane, M., Teixeira-Clerc, F., Bonnafous, S., Louvet, A., Lafdil, F., Pecker, F., Tran, A., Gual, P., Mallat, A., et al. (2014). M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59, 130-142. Wang, N., Liang, H., and Zen, K. (2014). Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 5, 614. Weisberg, S.P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R.L., and Ferrante, A.W., Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116, 115-124. Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796-1808. Williams, C.D., Stengel, J., Asike, M.I., Torres, D.M., Shaw, J., Contreras, M., Landt, C.L., and Harrison, S.A. (2011). Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124-131. Wouters, K., van Bilsen, M., van Gorp, P.J., Bieghs, V., Lutjohann, D., Kerksiek, A., Staels, B., Hofker, M.H., and Shiri-Sverdlov, R. (2010). Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett 584, 1001-1005. Yan, M., Mehta, J.L., Zhang, W., and Hu, C. (2011). LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther 25, 451-459. Yang, C.Y., Raya, J.L., Chen, H.H., Chen, C.H., Abe, Y., Pownall, H.J., Taylor, A.A., and Smith, C.V. (2003). Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol 23, 1083-1090. Yang, T.C., Chang, P.Y., Kuo, T.L., and Lu, S.C. (2017a). Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-kappaB and ERK2 activation. Atherosclerosis 267, 1-9. Yang, T.C., Chang, P.Y., and Lu, S.C. (2017b). L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 312, H265-H274. Yimin, Furumaki, H., Matsuoka, S., Sakurai, T., Kohanawa, M., Zhao, S., Kuge, Y., Tamaki, N., and Chiba, H. (2012). A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Invest 92, 265-281. Yoshida, H., Quehenberger, O., Kondratenko, N., Green, S., and Steinberg, D. (1998). Minimally oxidized low-density lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler Thromb Vasc Biol 18, 794-802. Yoshimura, S., Bondeson, J., Foxwell, B.M., Brennan, F.M., and Feldmann, M. (2001). Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 13, 675-683. Zhang, Y., Choksi, S., Chen, K., Pobezinskaya, Y., Linnoila, I., and Liu, Z.G. (2013). ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23, 898-914. Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., and Li, J. (2014). Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26, 192-197. 侯丞 (2009) 我有脂肪肝---怎麼辦?台灣肝臟學術文教基金會刊 第三十八期。 蘇慶豐 (2015) 非酒精性脂肪肝疾病的診斷與治療。家庭醫學與基層醫療 第三十卷第九期。 World Health Organization. (2017). Overweight and obesity. (accessed Nov, 2017). Retrieved from http://www.who.int/gho/ncd/risk_factors/overweight/en/ 衛生福利部國民健康署慢性疾病防治組. (2017). 慢性病盛行率. Retrieved from https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=641&pid=1231 衛 生 福 利 部 . (2017). 105 年 國 人 死 因 統 計 結 果 . Retrieved from http://www.mohw.gov.tw/cp-16-33598-1.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70052 | - |
| dc.description.abstract | 肥胖問題隨著經濟繁榮與飲食型態改變而日益嚴重,甚至演變成全球性的健康問題──肥胖患者屬於代謝症候群的高危險族群,容易罹患如動脈粥狀硬化與非酒精性脂肪肝炎等代謝性疾病,並併發心血管疾病的發生,對健康的風險極大,一般認為巨噬細胞在這些慢性疾病扮演關鍵角色。
巨噬細胞其功能具可塑性,稱為極化(polarization),會隨著免疫環境的不同而變為典型(M1)或是選擇型(M2)。一般認為,在許多慢性的發炎疾病中巨噬細胞會極化為促發炎的 M1 型並引起發炎;相反的,M2 型巨噬細胞則是抵消 M1 型引起之發炎反應,有減緩發炎與修復組織的作用。過去有文獻指出肥胖患者中巨噬細胞極化為 M1 型的較多,並引起胰島素抗性的產生。此外,在動脈粥狀硬化病患的斑塊切片中,病情較輕微且損傷較小的區域主要是 M2 分布,M1 則是分布在病情嚴重且主要損傷的區域。而在肝損傷較輕微的肥胖病患的肝組織中,相較於嚴重者其組織 mRNA 表現是以 M2 為主,同時在組織切片中觀察到較多的 M1 細胞自噬的情形。然而是何種因子在這些疾病中誘導了巨噬細胞之極化,目前則是尚不清楚。在先前實驗室學長的研究結果指出自 STEMI 病人分離之陰電性低密度脂蛋白(LDL(-))會刺激巨噬細胞分泌 IL-1β;此外,從餵食 high fat-high cholesterol 飼料的黃金倉鼠分離之 LDL(-)亦會刺激大鼠肝臟 Kupffer cell 分泌 TNF-α 引起發炎反應,顯示 LDL(-)引起發炎因子生成,可能與巨噬細胞極化有關。我的實驗目的即是要探討 LDL(-)是否引起巨噬細胞之極化與其可能透過的途徑為何。 以高脂高膽固醇飼料餵食紐西蘭白兔,由其血漿中分離得到 LDL(-)。再將LDL(-)加到 THP-1 細胞培養液中,再分析 M1 與 M2 細胞的標記基因的表現。實驗結果發現,LDL(-)會顯著促進巨噬細胞中發炎相關基因 mRNA 表現和蛋白質分泌,並且表面標記分析亦可見明顯的 M1 訊號,但是在 nLDL 卻只有增加些微的表現,甚至表面標記分析結果與對照的細胞無異;而 M2 相關的基因表現、蛋白質分泌與表面標記訊號則是沒有因 nLDL 或 LDL(-)誘導而有顯著的提升。由於 LDL(-)會誘導清道夫受體 LOX-1 顯著表現並較其他受體的表現突出,我們利用 shRNA knockdown 的方法抑制 LOX-1 表現並觀察 LDL(-)對其極化的誘導情形。研究結果顯示,LDL(-)誘導的發炎激素分泌會在 LOX-1 knockdown 的細胞中顯著減少,M1標記的訊號也是降低至與未處理的細胞相同;而 LOX-1 knockdown 之後巨噬細胞M2 標記 CD206 則是沒有明顯的變化。 綜合以上,我們的實驗結果顯示 LDL(-)在人類單核球細胞分化而成的巨噬細胞中主要是透過清道夫受體 LOX-1 誘導巨噬細胞極化為促發炎之 M1 型,而過程可能是透過 NF-κB 等訊息傳遞途徑。對於 LDL(-)誘導的巨噬細胞極化,LOX-1 在其中扮演了關鍵角色,也提供了 LDL(-)、LOX-1 與代謝性疾病的發展的另一層關聯。 | zh_TW |
| dc.description.abstract | Obesity has been a health problem worldwide because of economic prosperity and changing of diet preference, and has become a serious epidemic nowadays. Morbidly obese people usually suffer from metabolic syndromes, which are linked to diabetes mellitus, atherosclerosis and non-alcoholic steatohepatitis (NASH), and complicates with cardiovascular diseases, such as myocardial infarction. It is generally believed that macrophages play a central role in the formation of these metabolic diseases.
Macrophages possess a functional plasticity known as polarization which is driven by their immunological microenvironment. The spectrum of macrophages activation and polarization can be classified into two extreme states: classically activated (M1) phenotype and alternatively activated (M2) phenotype. In general, M1 macrophages promote inflammation in a variety of chronic inflammatory diseases; and M2 macrophages counterbalance the effect, promoting inflammation resolution and tissue repair. Results of several studies indicate that insulin resistance in morbidly obesity patients is associated with M1 macrophages, and in human atherosclerotic lesions, immunohistochemical analysis shows M2 macrophages are localized to more stable locations within asymptomatic plaques, while M1 macrophages accumulate in developed lipid core and diseased portion of the symptomatic plaques. Furthermore, hepatic M2 marker mRNA expression is higher and M1 Kupffer cell apoptosis is promoted by M2 counterparts in liver biopsies of morbidly obese patients with limited hepatic injury. These results suggest that polarization plays an important role in the progression of the metabolic diseases. However, what factor induces the polarization is unknown. In this study, we investigated if electronegative LDL (LDL(-)) is able to induce macrophage polarization and the underlying mechanism. Based on our previous data, LDL(-) from STEMI patients can induce IL-1β secretion in THP-1 macrophages and LDL(-) from Mesocricetus auratus fed with an high fat- high cholesterol diet induced TNF-α secretion in rat Kupffer cell. The results suggest LDL(-) may modulate polarization of macrophages. In this study, LDL(-) is isolated from plasma of high-fat/high-cholesterol diet fed rabbit. And then added to the THP-1 cells which were treated with PMA for 2 days. The results show that LDL(-) significantly provoke mRNA expressions and cytokine secretions of pro-inflammatory genes, and M1 surface marker, CD86; while nLDL exert much lower effects. However, levels of mRNA and protein of M2-related genes, and the levels of M2 surface markers were not significantly induced by nLDL or LDL(-). Besides M1 markers, LDL(-) also induced higher expression level of LOX-1 than other receptors. Using LOX-1 knockdown THP-1 cells, our results demonstrated that LDL(-)-induced secretions of pro-inflammatory cytokines were remarkably decreased, and LDL(-)-induced CD86 up-regulation was almost abolished demonstrated by flow cytometry and immunofluorescence assays. In parallel, M2 marker CD206 was not induced in LOX-1 knockdown cells. Taken together, our results show that LDL(-) induces macrophages polarize into pro-inflammatory M1 type in THP-1 cells and LOX-1 serves a crucial role in LDL(-)-induced polarization of macrophages. These results suggest that pharmacological interventions targeting LOX-1 may be a relevant strategy to polarization-related chronic inflammatory diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:40:54Z (GMT). No. of bitstreams: 1 ntu-107-R04442023-1.pdf: 3401039 bytes, checksum: b190f7d79e886ed59e453a1cdbc954dd (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
論文口試審定書 ......................................... i 誌謝 ................................................. ii 摘要 ................................................. iv Abstract ............................................. vi 第一章 緒論 ........................................... 1 第一節、文獻回顧 ....................................... 2 一、肥胖與代謝性疾病的流行............................... 2 二、動脈粥狀硬化 (Atherosclerosis)..................... 3 三、非酒精性脂肪肝 (Nonalcoholic fatty liver disease, NAFLD)................................................. 4 四、非酒精性脂肪肝炎 (NASH) 與肝纖維化 ................. 6 五、膽固醇對 NAFLD 與 NASH 之影響 ....................... 7 六、氧化低密度脂蛋白(oxidized LDL, oxLDL)與陰電性氧化低密度脂蛋白(electronegative LDL, LDL(-))................................................... 9 七、類凝集素氧化性低密度脂蛋白受器 (lectin-like oxidized LDL receptor 1, LOX-1). .....................................11 八、巨噬細胞之極化現象 (polarization)與其在動脈粥狀硬化及 NASH 的作用及重要性 ............................................11 九、極化與代謝性疾病的關聯 ................................ 13 第二節、研究動機與實驗目的................................. 15 一、研究動機 ............................................. 15 二、實驗目的 ............................................. 15 第二章 材料與方法 ....................................... 17 第一節、實驗材料 ......................................... 18 第二節、細胞培養 ......................................... 20 一、THP-1 細胞株 ........................................ 20 二、Knockdown THP-1 細胞株 .............................. 20 第三節、MTT 試驗 ........................................ 22 一、原理 ................................................ 22 二、方法 ................................................ 22 第四節、細胞 mRNA 表現分析 ............................... 23 一、細胞 total RNA 抽取 ................................. 23 二、以反轉錄酶合成第一股 cDNA (Reverse transcription) .... 23 三、定量聚合酶連鎖反應(Quantitative-polymerase chain reaction, Q-PCR) ................................................. 24 第五節、酵素連結免疫吸附法(Enzyme-Linked ImmunoSorbent Assay, ELISA) ................................................. 26 一、TNF-α .............................................. 26 二、IL-1β .............................................. 26 三、IL-6 ............................................... 27 四、IL-10 .............................................. 27 五、TGF-β1 ............................................. 28 第六節、流式細胞技術 (Flow Cytometry) ................... 28 一、原理 ................................................ 28 二、方法 ................................................ 29 第七節、免疫螢光染色 (immunofluorescence) ............... 29 一、原理 ................................................ 29 二、方法 ................................................ 30 第八節、動物飼養 ......................................... 30 一、動物模式 ............................................. 30 二、飼料製備與動物飼養 .................................... 30 三、採血與血漿分離 ....................................... 31 四、血漿分析 ............................................. 31 第九節、統計分析 ......................................... 33 第三章 實驗結果 ......................................... 34 第一節、PMA 分化 THP-1 為 M0 型巨噬細胞 ................... 35 第二節、兔子 nLDL 與 LDL(-)並不會對人類巨噬細胞的存活造成影響 ......................................................... 35 第三節、M1 型巨噬細胞基因表現與細胞激素分泌因 LDL(-)誘導而增加 ......................................................... 36 第四節、M2 型巨噬細胞基因表現與細胞激素分泌可能不受 nLDL 與 LDL(-)所誘導 ............................................ 37 第五節、LDL(-)誘導巨噬細胞明顯增加 M1 表面標記 CD86 的表現 ........................................................ 38 第六節、nLDL 與 LDL(-)皆不誘導 M2 型表面標記 CD206 表現...................................................... 39 第七節、LDL(-)顯著誘導 LOX-1 的表現 ...................... 40 第八節、LOX-1 對於 LDL(-)誘導巨噬細胞極化是重要的 ......... 41 一、M1 型細胞激素分泌量因抑制 LOX-1 而有所改變 ............ 41 二、表面標記的表現確實受到 LOX-1 抑制的影響 ............... 42 第四章 討論 ............................................ 45 第一節、nLDL 與 LDL(-)處理並不會造成細胞死亡............... 46 第二節、LDL(-)誘導巨噬細胞極化為 M1 型 .................... 46 第三節、LDL(-)並不誘導巨噬細胞極化為 M2 型 ................ 48 第四節、LDL(-)刺激巨噬細胞表現明顯的 M1 型表面標記 ......... 49 第五節、LDL(-)可能不刺激細胞極化為 M2b 亞型巨噬細胞 ........ 51 第六節、LOX-1 在 LDL(-)刺激所誘導的極化中可能扮演的角色 .... 51 一、LDL(-)刺激巨噬細胞表現 LOX-1 較 nLDL 更顯著 ........... 51 二、不同清道夫受體與經過修飾的 LDL 可能的關聯 .............. 52 第七節、抑制 LOX-1 使得 LDL(-)誘導的 M1 型特徵皆有所減弱 ... 54 第八節、總結──LOX-1 在巨噬細胞的極化中極為關鍵 ............. 55 第五章 圖表 ............................................ 56 參考文獻 ................................................ 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 極化 | zh_TW |
| dc.subject | 陰電性低密度脂蛋白 | zh_TW |
| dc.subject | 類凝集素氧化低密度脂蛋白受器-1 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 代謝性疾病 | zh_TW |
| dc.subject | Metabolic disease | en |
| dc.subject | Macrophages | en |
| dc.subject | Inflammation | en |
| dc.subject | Polarization | en |
| dc.subject | LDL(-) | en |
| dc.subject | LOX-1 | en |
| dc.title | 陰電性低密度脂蛋白對巨噬細胞極化的影響:LOX-1 扮演的關鍵角色 | zh_TW |
| dc.title | Effects of electronegative-LDL on polarization of macrophages: A crucial role for LOX-1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳惠玲(Hui-Ling Chen),張博淵(Po-Yuan Chang),何承懋(Cheng-Maw Ho) | |
| dc.subject.keyword | 代謝性疾病,巨噬細胞,發炎反應,極化,陰電性低密度脂蛋白,類凝集素氧化低密度脂蛋白受器-1, | zh_TW |
| dc.subject.keyword | Metabolic disease,Macrophages,Inflammation,Polarization,LDL(-),LOX-1, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU201800408 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
